147 research outputs found

    Die Übersetzung der Finanzkrise in eine Wirtschaftskrise: Management- und Betriebsratsstrategien nach der Krise in einer Aktiengesellschaft

    Full text link
    Im folgenden Beitrag werden mittels einer Ereignisstrukturanalyse die Handlungen betrieblicher AkteurInnen aus Management und Betriebsrat einer Aktiengesellschaft der IT-Branche analysiert. Die untersuchte Zeitsequenz beginnt mit der Reaktion des Vorstandes auf die Finanzkrise von 2008 und endet mit der Unterzeichnung einer Vereinbarung zwischen Vorstand und Betriebsrat zu Cost Saving Maßnahmen zum 20. Februar 2009. Entworfen wird ein historisches Argument, das die Übersetzung der Krise in die betriebliche Realität der AkteurInnen nachzeichnet und eine im Betriebsrat verlaufende Konfliktlinie zwischen einer gewerkschafts- und einer unternehmensnahen politischen Gruppierung herausarbeitet.The following paper applies an event-structure analysis to scrutinize the social ac-tions of members to the executive board and the work council in a stock corporation of the information technology sector. The analyzed sequence of events starts with the reaction of the board of directors to the Financial Crisis of 2008 and ends with the signing of a cost saving program on the 20th of February 2009. I develop a historical argument that lines out the translation of the crisis into the social reality of the actors within the corporation and sketches a line of conflict between a union and a corporation oriented political grouping

    Multi-stage Biomarker Models for Progression Estimation in Alzheimer’s Disease

    Get PDF
    The estimation of disease progression in Alzheimer’s disease (AD) based on a vector of quantitative biomarkers is of high interest to clinicians, patients, and biomedical researchers alike. In this work, quantile regression is employed to learn statistical models describing the evolution of such biomarkers. Two separate models are constructed using (1) subjects that progress from a cognitively normal (CN) stage to mild cognitive impairment (MCI) and (2) subjects that progress from MCI to AD during the observation window of a longitudinal study. These models are then automatically combined to develop a multi-stage disease progression model for the whole disease course. A probabilistic approach is derived to estimate the current disease progress (DP) and the disease progression rate (DPR) of a given individual by fitting any acquired biomarkers to these models. A particular strength of this method is that it is applicable even if individual biomarker measurements are missing for the subject. Employing cognitive scores and image-based biomarkers, the presented method is used to estimate DP and DPR for subjects from the Alzheimer’s Disease Neuroimaging Initiative (ADNI). Further, the potential use of these values as features for different classification tasks is demonstrated. For example, accuracy of 64% is reached for CN vs. MCI vs. AD classification

    Integrating kNN with Foundation Models for Adaptable and Privacy-Aware Image Classification

    Full text link
    Traditional deep learning models implicity encode knowledge limiting their transparency and ability to adapt to data changes. Yet, this adaptability is vital for addressing user data privacy concerns. We address this limitation by storing embeddings of the underlying training data independently of the model weights, enabling dynamic data modifications without retraining. Specifically, our approach integrates the kk-Nearest Neighbor (kk-NN) classifier with a vision-based foundation model, pre-trained self-supervised on natural images, enhancing interpretability and adaptability. We share open-source implementations of a previously unpublished baseline method as well as our performance-improving contributions. Quantitative experiments confirm improved classification across established benchmark datasets and the method's applicability to distinct medical image classification tasks. Additionally, we assess the method's robustness in continual learning and data removal scenarios. The approach exhibits great promise for bridging the gap between foundation models' performance and challenges tied to data privacy. The source code is available at https://github.com/TobArc/privacy-aware-image-classification-with-kNN.Comment: Accepted at 21st IEEE International Symposium on Biomedical Imaging (IEEE ISBI 2024

    Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network

    Get PDF
    Despite the breakthroughs in accuracy and speed of single image super-resolution using faster and deeper convolutional neural networks, one central problem remains largely unsolved: how do we recover the finer texture details when we super-resolve at large upscaling factors? The behavior of optimization-based super-resolution methods is principally driven by the choice of the objective function. Recent work has largely focused on minimizing the mean squared reconstruction error. The resulting estimates have high peak signal-to-noise ratios, but they are often lacking high-frequency details and are perceptually unsatisfying in the sense that they fail to match the fidelity expected at the higher resolution. In this paper, we present SRGAN, a generative adversarial network (GAN) for image super-resolution (SR). To our knowledge, it is the first framework capable of inferring photo-realistic natural images for 4x upscaling factors. To achieve this, we propose a perceptual loss function which consists of an adversarial loss and a content loss. The adversarial loss pushes our solution to the natural image manifold using a discriminator network that is trained to differentiate between the super-resolved images and original photo-realistic images. In addition, we use a content loss motivated by perceptual similarity instead of similarity in pixel space. Our deep residual network is able to recover photo-realistic textures from heavily downsampled images on public benchmarks. An extensive mean-opinion-score (MOS) test shows hugely significant gains in perceptual quality using SRGAN. The MOS scores obtained with SRGAN are closer to those of the original high-resolution images than to those obtained with any state-of-the-art method

    Integrative Analysis of Circulating Metabolite Profiles and Magnetic Resonance Imaging Metrics in Patients with Traumatic Brain Injury

    Get PDF
    Recent evidence suggests that patients with traumatic brain injuries (TBIs) have a distinct circulating metabolic profile. However, it is unclear if this metabolomic profile corresponds to changes in brain morphology as observed by magnetic resonance imaging (MRI). The aim of this study was to explore how circulating serum metabolites, following TBI, relate to structural MRI (sMRI) findings. Serum samples were collected upon admission to the emergency department from patients suffering from acute TBI and metabolites were measured using mass spectrometry-based metabolomics. Most of these patients sustained a mild TBI. In the same patients, sMRIs were taken and volumetric data were extracted (138 metrics). From a pool of 203 eligible screened patients, 96 met the inclusion criteria for this study. Metabolites were summarized as eight clusters and sMRI data were reduced to 15 independent components (ICs). Partial correlation analysis showed that four metabolite clusters had significant associations with specific ICs, reflecting both the grey and white matter brain injury. Multiple machine learning approaches were then applied in order to investigate if circulating metabolites could distinguish between positive and negative sMRI findings. A logistic regression model was developed, comprised of two metabolic predictors (erythronic acid and myo-inositol), which, together with neurofilament light polypeptide (NF-L), discriminated positive and negative sMRI findings with an area under the curve of the receiver-operating characteristic of 0.85 (specificity = 0.89, sensitivity = 0.65). The results of this study show that metabolomic analysis of blood samples upon admission, either alone or in combination with protein biomarkers, can provide valuable information about the impact of TBI on brain structural changes

    A robust similarity measure for volumetric image registration with outliers

    Get PDF
    Image registration under challenging realistic conditions is a very important area of research. In this paper, we focus on algorithms that seek to densely align two volumetric images according to a global similarity measure. Despite intensive research in this area, there is still a need for similarity measures that are robust to outliers common to many different types of images. For example, medical image data is often corrupted by intensity inhomogeneities and may contain outliers in the form of pathologies. In this paper we propose a global similarity measure that is robust to both intensity inhomogeneities and outliers without requiring prior knowledge of the type of outliers. We combine the normalised gradients of images with the cosine function and show that it is theoretically robust against a very general class of outliers. Experimentally, we verify the robustness of our measures within two distinct algorithms. Firstly, we embed our similarity measures within a proof-of-concept extension of the Lucas–Kanade algorithm for volumetric data. Finally, we embed our measures within a popular non-rigid alignment framework based on free-form deformations and show it to be robust against both simulated tumours and intensity inhomogeneities

    Standardized evaluation of algorithms for computer-aided diagnosis of dementia based on structural MRI: The CADDementia challenge

    Get PDF
    Algorithms for computer-aided diagnosis of dementia based on structural MRI have demonstrated high performance in the literature, but are difficult to compare as different data sets and methodology were used for evaluation. In addition, it is unclear how the algorithms would perform on previously unseen data, and thus, how they would perform in clinical practice when there is no real opportunity to adapt the algorithm to the data at hand. To address these comparability, generalizability and clinical applicability issues, we organized a grand challenge that aimed to objectively compare algorithms based on a clinically representative multi-center data set. Using clinical practice as the starting point, the goal was to reproduce the clinical diagnosis. Therefore, we evaluated algorithms for multi-class classification of three diagnostic groups: patients with probable Alzheimer's disease, patients with mild cognitive impairment and healthy controls. The diagnosis based on clinical criteria was used as reference standard, as it was the best available reference despite its known limitations. For evaluation, a previously unseen test set was used consisting of 354 T1-weighted MRI scans with the diagnoses blinded. Fifteen research teams participated with a total of 29 algorithms. The algorithms were trained on a small training set (n = 30) and optionally on data from other sources (e.g., the Alzheimer's Disease Neuroimaging Initiative, the Australian Imaging Biomarkers and Lifestyle flagship study of aging). The best performing algorithm yielded an accuracy of 63.0% and an area under the receiver-operating-characteristic curve (AUC) of 78.8%. In general, the best performances were achieved using feature extraction based on voxel-based morphometry or a combination of features that included volume, cortical thickness, shape and intensity. The challenge is open for new submissions via the web-based framework: http://caddementia.grand-challenge.org
    corecore