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Abstract. The estimation of disease progression in Alzheimer’s disease
(AD) based on a vector of quantitative biomarkers is of high interest
to clinicians, patients, and biomedical researchers alike. In this work,
quantile regression is employed to learn statistical models describing the
evolution of such biomarkers. Two separate models are constructed using
(1) subjects that progress from a cognitively normal (CN) stage to mild
cognitive impairment (MCI) and (2) subjects that progress from MCI
to AD during the observation window of a longitudinal study. These
models are then automatically combined to develop a multi-stage disease
progression model for the whole disease course. A probabilistic approach
is derived to estimate the current disease progress (DP) and the disease
progression rate (DPR) of a given individual by fitting any acquired
biomarkers to these models. A particular strength of this method is that
it is applicable even if individual biomarker measurements are missing
for the subject. Employing cognitive scores and image-based biomarkers,
the presented method is used to estimate DP and DPR for subjects from
the Alzheimer’s Disease Neuroimaging Initiative (ADNI). Further, the
potential use of these values as features for different classification tasks
is demonstrated. For example, accuracy of 64 % is reached for CN vs.
MCI vs. AD classification.

1 Introduction

Alzheimer’s disease (AD) is a progressive neurodegenerative condition and the 
most common form of dementia. Patients that show first symptoms like general 
memory loss are usually diagnosed as suffering from Mild Cognitive Impair-
ment (MCI), an early stage of dementia. Later, throughout the disease, these 
symptoms are followed by behavioural changes and further cognitive and func-
tional decline. Patients become less able to perform simple tasks and increasingly 
depend on carers’ support. However, an objective staging of the disease is non-
trivial due to the considerable variability in the patient’s age at disease onset 
and the individual rate of progression [3]. Estimating the current disease severity



and the future rate of progression is of interest for patients and caregivers but
also has potential to improve clinical trials as more homogeneous study groups
can be recruited.

Most existing approaches with this aim employ the results of cognitive tests
like the Clinical Dementia Rating – Sum of Boxes (CDR-SB) as biomarkers to
characterise disease progression. Many of those methods (see e.g. [5] for a detailed
overview) use Markov transition models and Cox proportional hazard models to
estimate disease progression. However, as detailed in [5], the main limitations
of these methods are “the use of a limited number of health states to capture
events related to disease progression over time”, and the fact that “a single symp-
tom, such as cognition, is not able to characterise AD progression”. Therefore,
additional meaningful biomarkers that better describe anatomical changes can
be quantified from imaging data. For example, [4,12] use an event-based model
to determine the order in which CSF-, image- and cognition-based biomarkers
become abnormal and then employ this information to assign a subject to one
of several discrete disease stages.

As modelling disease progression by a number of discrete stages is a strong
simplification, some approaches have been developed that acknowledge the
course of disease as a continuous process. For example, Yang et al. [10] assume
an exponential-shaped trajectory of the ADAS score. The authors then estimate
a time shift γ indicating the disease progress of a subject by fitting its ADAS
scores to this curve. Similarly, Delor et al. [2] compute a disease onset time by
adjusting subjects according to their CDR-SB score.

The approach presented in this work builds upon these methods. Here, quan-
tile regression is used to estimate typical trajectories of clinical biomarkers (see
Sect. 2). In detail, two models are trained, one for the transition from CN to MCI
and one for the MCI-to-AD conversion. These models are then combined to a
multi-stage model for the whole course of the disease. Thereafter, a probabilistic
model is derived that allows the estimation of a subjects current disease progress
and rate of progression based on measured biomarker values. The approach is
flexible with regard to the considered biomarkers, which can be based, for exam-
ple, on cognitive scores, neuroimaging, or both. Moreover, missing measurements
are handled in a natural way, this means, the approach can be employed even
if the set of observed biomarkers is incomplete. The proposed disease progress
estimation is evaluated in Sect. 3 using clinical data. Its applicability for different
classification tasks is demonstrated at the end of this section.

2 Methods

To model disease progression, the existence of a set of biomarker values yb
sv

acquired from multiple subjects s ∈ S = {1, . . . , nS} during multiple visits v ∈ Vs

is assumed. Here, b ∈ Bsv denotes the index of the biomarker. Each biomarker vec-
tor is associated with the time tsv ∈ T of acquisition, measured in days after the
first (baseline) visit, as well as the diagnosis dsv that was given during each visit.
The number of visits can vary for each subject, Vs ⊆ V = {1, . . . , nV }. Also, the
biomarkers acquired at each visit might differ, such that Bsv ⊆ B = {1, . . . , nB}.



In the training phase of the presented method, characteristic trajectories of
biomarkers in the course of disease progression are learned based on a number of
training subjects (Sect. 2.1). These models are then employed in the test phase
to estimate how far and how fast test subjects have progressed along the disease
trajectory (Sect. 2.2).

2.1 Model Learning

Aim of the model training phase is to learn the temporal trajectory of biomarker
evolution throughout the disease by determining the probability that a certain
biomarker b has a value yb at a specified time point. More technically, each mea-
sured biomarker value yb

sv is understood as an observation of a response variable
Y b at a disease progress (DP) psv ∈ R (the explanatory variable or covariate).
The conditional distribution of Y b given p is then denoted by fY b(y|p).

A disease progression model M(p) comprises the distributions of all biomark-
ers in B on a domain P ⊂ R, such that M(p) = {M1(p), . . . ,MnB (p)} with
Mb(p) := fY b(y|p) for p ∈ P . Another way of representing the model is by
its q-quantile functions yb

q(p), which can be derived directly from fY b(y|p) (for
example, the median trajectory is denoted by yb

0.5(p)).
The learning of a model consists of three main steps. First, the training

subjects have to be temporally aligned to establish correspondences between
the time points of observation. Progression models are then estimated using
quantile regression to learn the probability distributions fY b(y|p). Since temporal
alignment is based on the point of conversion from either CN to MCI or MCI to
AD, two separate models are learned. These two models are then combined to
a multi-stage progression model.

Temporal Alignment of the Training Data. Temporal alignment aims at
associating the time points tsv of biomarker acquisition to the corresponding
DP psv. In detail, the goal is to find a strictly monotonically increasing time
warp function τ(t) that maps the subject-specific acquisition time tsv ∈ T to
the population-based disease progress psv ∈ P , such that psv = τ(tsv). During
model training, the time point t0s at which the clinical diagnosis changes and thus
indicates transition to a more severe disease state is set to p = 0, that means

psv = τ(t0s; tsv) := tsv − t0s. (1)

For this reason, a specific model is trained for each transition phase (here,
CN-to-MCI and MCI-to-AD). To identify t0s, the visits v∗ and v∗∗ with the
last CN (MCI) and the first MCI (AD) diagnosis are determined. The time
point of conversion is then assumed to be the average of these two visits, i.e.
t0s := 0.5 · (tsv∗ + tsv∗∗).
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Fig. 1. Approach for automatically determining the optimal model offset δp.

Fig. 2. Example of the model composition. First, separate models are trained for
CN-to-MCI and MCI-to-AD converters. An optimal offset between these models is
then automatically determined and model training is repeated with the whole set of
samples (Colour figure online).

Learning Disease Progression Model. The conditional distributions fY b

are learned independently for each biomarker using quantile regression via vec-
tor generalised additive models (VGAMs) [11]. In contrast to logistic or expo-
nential regression [10], VGAMs do not depend on prior assumptions on the
functional form for each predictor variable other than their smoothness. How-
ever, the domain P of Mb(p) is limited to the progress interval contained in
the sample set. This means P is given by P = [p−, p+], with p− := mins,v(psv)
and p+ := maxs,v(psv) being the earliest and latest observed DP, respectively.
Therefore, the models are extrapolated by a linear extension of the underlying
predictor functions (see [11] for details) and P = R is assumed in the following.

Model Composition. To combine the CN/MCI and MCI/AD models, an
optimal offset δp is determined by optimising the similarity of the models in
the overlapping region. Given δp, the end point p

[1]
+ of the CN/MCI model M[1]

corresponds to p
[1]
+ − δp in the MCI/AD model M[2]. Similarly, M[2](p[2]− ) corre-

sponds to M[1](δp + p
[2]
− ) (cf. Fig. 1). The quality of the fit is quantified by

δ̂p := argmax
δp

1

2

[(
M[1](p

[1]
+ ) −M[2](p

[1]
+ − δp)

)
+
(
M[1](δp + p

[2]
− ) −M[2](p

[2]
− )
)]

with M[1](p) − M[2](q) = 1
|B|

∑
b∈B

∫
f
[1]

Y b(y|p) − f
[2]

Y b(y|q) dy being the area
between the corresponding density functions (averaged over all biomarkers).



After determining δ̂p, the multi-stage model is retrained using the full set
of samples with p = 0 defined as the point of conversion from CN to MCI
(see Fig. 2).

2.2 Progress Estimation

Once the disease progression model is built, the aim is to estimate the progress
of any given subject. However, the point of conversion t0s is usually unknown
and thus Eq. (1) cannot be employed. Progress estimation is accomplished by
finding the most likely time warp τ(t) that optimally fits the evolution of the
biomarkers, as measured from the patient, into the progression model M.

Let ts = (ts1, . . . , tsnV
)T be the vector containing the time points of all visits

of subject s and τ(ts) = (τ(ts1), . . . , τ(tsnV
))T . Let further ys = (ysv)v∈Vs

be
the biomarker vector measured for s, with ysv = (yb

sv)b∈Bsv
denoting the values

acquired at visit v. Based on ts, the most probable time warp τ̂s given ys is
determined by maximising the logarithm of the likelihood function L(τ(ts) |ys).
This means

τ̂s := argmax
τ

log L(τ(ts) |ys) = argmax
τ

log fY (ys | τ(ts)) (2)

with Y = (Y 1, . . . , Y nB ). The joint probability of all observations yb
sv is then

fY (ys | τ(ts)) =
∏

v∈Vs

fY (ysv | τ(tsv)) =
∏

v∈Vs

∏

b∈Bsv

fY b(yb
sv | τ(tsv)) .

whereat all biomarker observations are assumed to be independent of each other.
A simple translational time warp parameterisation is given by

τ(p0; t) := p0 + t. (3)

Here, the disease progress (DP) p0 ∈ R is an offset that indicates how far the
subject has progressed in the course of disease at the time point of the first
visit. However, this simple model cannot accommodate for different rates of
progression, which are known to exist between subjects [3]. If |Vs| > 1, the
extended affine time warp definition

τ(p0, r; t) := p0 + rt (4)

can be employed, where r ∈ R
+ is a scaling factor indicating the disease progres-

sion rate (DPR). The optimal values p̂0s and r̂s for DP and DPR are determined
by maximising Eq. (2) over all p0 and r, i.e. τ̂s(·) =̂ τ(p̂0s, r̂; ·). In general, more
complex time warps definitions are possible.

3 Experiments and Results

This section evaluates the presented approach using data from the Alzheimer’s
Disease Neuroimaging Initiative (ADNI, Sect. 3.1). First, in Sect. 3.2, progression
models are trained for all available biomarkers. These models are then employed
to estimate DP and DPR. The applicability of these values for different classifi-
cation tasks is shown in Sect. 3.3.



3.1 Materials

For this study, all subjects enrolled in either ADNI1, ADNIGO or ADNI2 (up
to an acquisition date of 30/01/2014) were considered. For model training, all
subjects were selected that converted either from CN to MCI (60 subjects) or
from MCI to AD (248 subjects). The number of available biomarkers can vary
between the training subjects (see below). To obtain consistent results in all
experiments, the test set consists of the subjects with a stable diagnosis for
which all biomarkers are present at baseline (bl), month 12 (m12) and month
24 (m24) visit. In total, these are 158 (88 male, 70 female) subjects classified
as cognitive normal (CN), 90 (50 male, 40 female) patients with early MCI
(EMCI), 94 (63 male, 31 female) with late MCI (LMCI), and 88 (45 male, 43
female) patients diagnosed with AD.

The set B of biomarkers considered in this work consists of cognitive scores
and image-based features as detailed in the following. Biomarker values are cor-
rected for age using a linear regression on the baseline samples of all control
subjects.

Cognitive Scores Bcog: A number of cognitive tests are performed by subjects
participating in the ADNI study at each visit. The achieved scores are used as
biomarkers. These tests include the Minimental State Examination (MMSE), the
Alzheimer’s Disease Assessment Scale (ADAS 11 and ADAS 13), the Functional
Activities Questionnaire (FAQ), the Clinical Dementia Rating – Sum of Boxes
(CDR-SB) and the Rey Auditory Verbal Learning Test (RAVLT). Not every test
score is available for each subject and visit, such that the absolute number of
available training samples varies between 393 to 399 samples from 60 subjects
for M[1], and 1452 to 1480 samples from 248 subjects for M[2].

Volumes of Brain Structures Bvol: Further, the volumes of 35 distinct brain
structures are used as biomarkers. For this, MR scans are first automatically
segmented into 134 regions using the whole brain segmentation proposed by [8],
which is based on multi-atlas label propagation with expectation-maximisation
based refinement (MALPEM). Here, brain atlases from the MICCAI 2012 Grand
Challenge on Multi-Atlas Labeling1 are employed. Corresponding manual expert
segmentations are provided by Neuromorphometrics, Inc.2 under academic sub-
scription. The 30 atlas segmentations are transformed to an unsegmented scan
and fused into a consensus probabilistic segmentation estimate using a local
weighting approach. Subsequently, all 134 probabilistic label estimates are fur-
ther refined using image intensity information.

To reduce the total number of models, left and right cortex are fused to single
structures, resulting in 35 distinct anatomical regions. For procedural reasons,
only segmentations for images acquired before 20/11/2013 were available, such
that the total number of training samples for each structure is 219 (59 subjects)
and 955 (247 subjects) for the two models.

1 https://masi.vuse.vanderbilt.edu/workshop2012.
2 http://Neuromorphometrics.com.

https://masi.vuse.vanderbilt.edu/workshop2012
http://Neuromorphometrics.com


Fig. 3. Examples for the learned multi-stage disease progression models (Colour figure
online).

Biomarkers Derived from Manifold LearningBml: Features obtained from
MR images using manifold learning (ML) have been shown to contain valuable
information about disease severity and progression [6]. The main idea of ML
is to find a meaningful, low-dimensional representation of a high-dimensional
feature space, such that similar scans also have similar coordinates in the low-
dimensional manifold. This is achieved in three steps. First, the image regions
that are most relevant with regard to information about disease state are auto-
matically learned using sparse regression as in [6]. To compensate for varying
intensity values in the images caused by different scanners and acquisition proto-
cols, local binary patterns (LBP) are computed in a 26-connected neighbourhood
for voxels within these regions and used as features in the high-dimensional space.
The manifold is then learned using Laplacian eigenmaps. The local geometry is
determined via a sparse similarity graph, built using the sum of squared differ-
ences (SSD) as similarity measure. Connections in the graph are made between
the k nearest neighbours, with the additional constraint that an instance can
only be connected to one instance per subject.

The manifold coordinates are computed for all training subjects with at least
5 visits, which results in 185 samples from 41 subjects available to train the
CN/MCI model and 859 samples (155 subjects) for the MCI/AD model. The
manifold dimension is chosen to be d = 20, that means 20 features are obtained
per subject per visit and denoted as D1 to D20.

3.2 Model Learning and Progress Estimation

Progression models are trained for all 60 biomarkers. CDRSB and FAQ models
could not be built for the CN-to-MCI transition because the majority of samples
is clustered at y = 0. These biomarkers were therefore omitted for determining



Fig. 4. Visualisation of the disease progress (DP) estimated with different biomarker
settings (columns: number of visits; rows: biomarker sets). The distribution of DPs is
indicated by the grey values. The x-axis gives the DP with solid and dashed lines at
the points of conversion at p = 0 and p = δp, and the mean model range p− and p+.
The red bars show the median and 25th/75th percentile of the estimated DPs (Color
figure online).

the model offset. Based on the remaining biomarkers, an δ̂p = 1860 days is deter-
mined. Composed models are then retrained based on all samples and example
results visualised in Fig. 3. Using the composed models, disease progression of
all test subjects is estimated as proposed in Sect. 2.2. Plausibility of the esti-
mated DPs is evaluated with regard to their ability do differentiate between the
different diagnoses, that means to what extent an ordering of CN < EMCI <
LMCI < AD is achieved. To this end, the disease progress p̂0s is estimated on
the search space [−2500, 4500] for all CN, EMCI, LMCI and AD subjects in the
test set using several biomarker configurations. On the one hand, different sets
of biomarkers Best are considered for estimation: Bcog, Bvol, Bml, as well as all
imaging-based biomarkers Bimg := Bvol ∪ Bml. On the other hand, biomarkers
from one (baseline), two (baseline and m12) and three (baseline, m12 and m24)
visits V est are employed. The distribution of the estimated DPs depending on
the diagnosis is visualised in Fig. 4.

3.3 Application: Classification

Image-Based Classification of Disease Stage. One of the main research
topics of image-based analysis of Alzheimer’s disease is the classification of sub-
jects according to their diagnosis based on structural MR images. The high
interest is highlighted by a classification challenge held in the course of MICCAI
20143. The estimated DPs are therefore employed as single features to distin-
guish between CN and AD, CN and MCI, MCI and AD, and all three classes
simultaneously. Support Vector Machines (SVMs) are used as classifiers. Cor-
responding to Sect. 3.2, DPs are estimated using the translational time warp
3 http://caddementia.grand-challenge.org.

http://caddementia.grand-challenge.org


Table 1. Results for the image-based classification of subjects according to their diag-
nosis. Different imaging biomarkers acquired at a different number of visits are com-
pared. For each test, the accuracies (ACC) of a 10-fold cross validation are given.

Biomarkers Visits CN/AD CN/MCI MCI/AD CN/MCI/AD

Best V est ACC ACC ACC ACC

Bml {bl} 0.89 0.71 0.82 0.63

{bl, m12} 0.91 0.71 0.82 0.63

{bl, m12, m24} 0.91 0.69 0.82 0.61

Bvol {bl} 0.83 0.68 0.80 0.59

{bl, m12} 0.86 0.68 0.78 0.58

{bl, m12, m24} 0.85 0.69 0.78 0.58

Bimg {bl} 0.88 0.72 0.81 0.63

{bl, m12} 0.90 0.71 0.83 0.64

{bl, m12, m24} 0.90 0.71 0.83 0.64

definition (3) based on different biomarker settings and compared to each other.
The cognitive scores are excluded because the diagnosis is made largely based on
the CDR, such that including them biases the classification (e.g., classification
accuracy reaches 1.0 for CN vs. AD and 0.96 for MCI vs. AD using Bcog at
baseline). The results of a 10-fold cross validation are shown in Table 1.

Classification of Stable and Progressive MCI. Of high clinical interest
is the task of identifying subjects with memory complaints that will develop
Alzheimer’s disease within a given period of time [9]. For example, this infor-
mation is valuable to select subjects for clinical trials. Therefore, classification
between MCI/AD converters and non-converters is performed using different
features: A) DPs estimated with the time warp definition Eq. (3) using m12
measurements, B) DPs using baseline and m12 measurements (translational time
warp Eq. (3)) and C) DPs and DPRs computed with the affine time warp Eq. (4)
based on baseline and m12 visits. The set of converters (progressive MCI, pMCI)
consists of all subjects that convert from MCI to AD between m12 and m36 visit.
It is to be noted that these subjects are part of the training set used for learning
the progression models, which introduces a bias in the test. However, adding
one subject to a set of more than 1500 samples for the quantile regression barely
changes the models, such that this effect can be neglected. Non-converters are
test subjects with a stable MCI diagnosis (sMCI). In total, the data consists of
231 sMCI and 106 pMCI subjects. Weighted SVMs are used for classification to
compensate for the unbalanced sets. Classification results are given in Table 2.

Classification of Subjects with Rapid Cognitive Decline (RCD). The
rate of cognitive decline is known to vary considerably between subjects. It
is therefore of interest for family and researchers alike to predict if a subject



will suffer a rapid cognitive decline (RCD). Following [1], RCD is defined as a
decrease of 8 or more MMSE points in the course of 2 years (28 subjects in the
test set of 633 subjects). All remaining 605 test subjects are labeled as non-RCD.
Classification results are given in Table 2.

Table 2. Results for the classification between subjects with stable and progressive
MCI (sMCI vs. pMCI), and the identification of subjects with rapid cognitive decline
(RCD). For all test, accuracy (ACC), sensitivity (SENS) and specificity (SPEC) of a
10-fold cross validation are given.

Biomarkers Visits Time warp sMCI vs. pMCI RCD vs. non-RCD

Best V est τ(t) ACC SENS SPEC ACC SENS SPEC

Bcog {m12} DP 0.78 0.82 0.76 0.89 0.90 0.89

{bl, m12} DP 0.77 0.82 0.75 0.84 0.83 0.84

{bl, m12} DP/DPR 0.79 0.82 0.78 0.92 0.97 0.92

Bml {m12} DP 0.73 0.82 0.68 0.65 1.00 0.63

{bl, m12} DP 0.72 0.77 0.69 0.64 1.00 0.63

{bl, m12} DP/DPR 0.72 0.88 0.64 0.69 0.87 0.68

Bvol {m12} DP 0.68 0.59 0.71 0.73 0.83 0.73

{bl, m12} DP 0.68 0.54 0.74 0.74 0.87 0.73

{bl, m12} DP/DPR 0.66 0.68 0.66 0.75 0.83 0.74

Bimg {m12} DP 0.68 0.71 0.67 0.70 0.90 0.69

{bl, m12} DP 0.70 0.65 0.72 0.72 0.87 0.71

{bl, m12} DP/DPR 0.71 0.84 0.64 0.73 0.83 0.73

4 Discussion

Visually assessed, the trained multi-stage models appear plausible for all bio-
markers (cf. Figs. 2 and 3). In particular, the automatically determined offset
of δ̂p = 1860 days entails a smooth transition between CN/MCI and MCI/AD
models and is in the same range as a manual fit would be. This indicates the
validity of the presented approach for model composition.

While classic machine learning methods would be restricted to the set of
training subjects for which all considered biomarkers are present, all available
samples are used for model learning in the presented approach. For example, a
subject’s CDR-SB score is considered even though no MMSE was acquired.

The estimated DPs visualised in Fig. 4 show a good class separation. Nat-
urally, the cognitive scores perform best for distinguishing between the four
classes, while image-based measurements suffer from a larger inter-subject vari-
ability. Neither volumetric nor manifold features seem to be clearly superior.
Adding measurements from multiple visits slightly reduces noise and increases
class separability. A particular advantage of the presented approach for progress



estimation is that all available data can be used without retraining the model. It
is, for example, possible to estimate the DP if only cognitive scores are available
for one visit and only image-based biomarkers for another visit. In this way, all
available information can be employed in an optimal way.

The experiments show that DP and DPR are powerful features for differ-
ent classification tasks. The results of the three-class classification of the dis-
ease stage are, for example, on par with [7] (even though not on exactly the
same data and therefore not directly comparable). Interestingly, CN/MCI clas-
sification is worse and MCI/AD classification considerably better than in [7].
A possible explanation for this observation is the fact that fewer training sam-
ples were available from CN/MCI converters and the model is therefore less
precise in this region. DP and DPR are also successfully employed to distinguish
between stable and progressive MCI subjects and to identify patients with rapid
cognitive decline. While not directly comparable (due to a different set of sub-
jects), the results for sMCI vs. pMCI classification are on par with the literature
(e.g., ACC = 0.67 is reported for MRI-based biomarkers in [9]). No results for an
automatic RCD prediction have been published so far (to the best of our knowl-
edge), however, classification accuracy is in the same range as for predicting
conversion to AD and therefore appears reasonable. In all tests, cognitive scores
excel as biomarkers. Interestingly, manifold coordinates perform better then vol-
umetric features for separating stable from progressive MCI, but worse for RCD
detection. The combination of the image-based features enhances robustness and
performs best on average. Further, joint DP and DPR estimation considerably
enhances classification of subjects with RCD.

In summary, classification results highlight the validity of the estimated DP
and DPR values. However, the method still relies on the definition of meaningful
biomarkers, as the superiority of Bcog in all experiments shows. In future work,
it would therefore be interesting to employ biomarkers based on brain atro-
phy, tensor-based morphometry or PET imaging. Given enough training data, it
would further be highly interesting to generate personalised models for certain
groups, e.g. male and female patients or APoE ε4 positive and negative subjects.

5 Conclusion

In this work, a biomarker-based method for modelling disease progression from a
cognitively normal stage to Alzheimer’s disease was proposed. This was achieved
by learning two separate models for the CN/MCI and MCI/AD transition phases
using quantile regression and then combining these to a multi-stage model. Fur-
ther, a probabilistic approach for estimating the disease progress and the rate of
progression for any given subject was presented.

Model training and progression estimation were then evaluated on the ADNI
database. The estimated DPs showed good class separability on the whole
domain from CN to AD. DP and DPR were further successfully employed as fea-
tures to classify subjects according to their disease stage, to differentiate between
stable and progressive MCI and to identify subjects with rapid cognitive decline,
highlighting the versatile applicability of the presented approach.
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