2,379 research outputs found

    Determination of the Fermion Pair Size in a Resonantly Interacting Superfluid

    Full text link
    Fermionic superfluidity requires the formation of pairs. The actual size of these fermion pairs varies by orders of magnitude from the femtometer scale in neutron stars and nuclei to the micrometer range in conventional superconductors. Many properties of the superfluid depend on the pair size relative to the interparticle spacing. This is expressed in BCS-BEC crossover theories, describing the crossover from a Bardeen-Cooper-Schrieffer (BCS) type superfluid of loosely bound and large Cooper pairs to Bose-Einstein condensation (BEC) of tightly bound molecules. Such a crossover superfluid has been realized in ultracold atomic gases where high temperature superfluidity has been observed. The microscopic properties of the fermion pairs can be probed with radio-frequency (rf) spectroscopy. Previous work was difficult to interpret due to strong and not well understood final state interactions. Here we realize a new superfluid spin mixture where such interactions have negligible influence and present fermion-pair dissociation spectra that reveal the underlying pairing correlations. This allows us to determine the spectroscopic pair size in the resonantly interacting gas to be 2.6(2)/kF (kF is the Fermi wave number). The pairs are therefore smaller than the interparticle spacing and the smallest pairs observed in fermionic superfluids. This finding highlights the importance of small fermion pairs for superfluidity at high critical temperatures. We have also identified transitions from fermion pairs into bound molecular states and into many-body bound states in the case of strong final state interactions.Comment: 8 pages, 7 figures; Figures updated; New Figures added; Updated discussion of fit function

    Drawing Trees with Perfect Angular Resolution and Polynomial Area

    Full text link
    We study methods for drawing trees with perfect angular resolution, i.e., with angles at each node v equal to 2{\pi}/d(v). We show: 1. Any unordered tree has a crossing-free straight-line drawing with perfect angular resolution and polynomial area. 2. There are ordered trees that require exponential area for any crossing-free straight-line drawing having perfect angular resolution. 3. Any ordered tree has a crossing-free Lombardi-style drawing (where each edge is represented by a circular arc) with perfect angular resolution and polynomial area. Thus, our results explore what is achievable with straight-line drawings and what more is achievable with Lombardi-style drawings, with respect to drawings of trees with perfect angular resolution.Comment: 30 pages, 17 figure

    Auto-Tandem Catalysis in Ionic Liquids: Synthesis of 2-Oxazolidinones by Palladium-Catalyzed Oxidative Carbonylation of Propargylic Amines in EmimEtSO4

    Get PDF
    A convenient carbonylative approach to 2-oxazolidinone derivatives carried out using an Department of Chemistry, University of Parma, Parco Area delle Scienze 17/A, 43124 Parma, Italy; ionic liquid (1-ethyl-3-methylimidazolium nicola.ethyl sulfate, EmimEtSO4 ) as the solvent is presented. It is based on the sequential concatenation of two catalytic cycles, both catalyzed by the same metal species (auto-tandem catalysis): the first cycle corresponds to the oxidative monoaminocarbonylation of the triple bond of Received: propargylic 16 June 2016; amines Accepted: to give 5 July 2016; the Published: corresponding date 2-ynamide intermediates, while the second one involves the cyclocarbonylation of the latter to yield 2-(2-oxooxazolidin-5-ylidene)-acetamides. Abstract: A convenient carbonylative approach to 2-oxazolidinone derivatives carried out using an Reactions areionic carried liquid out (1-ethyl-3-methylimidazolium using a simple catalytic ethyl system sulfate, EmimEtSO4) consisting as ofthe PdI solvent2 in conjunction is presented. It is with an excess of KI, and thebased catalyst/solvent on the sequential system concatenation could of two be recycled catalytic cycles, several both catalyzed times without by the same appreciable metal species loss of activity (auto-tandem catalysis): the first cycle corresponds to the oxidative monoaminocarbonylation of the after extraction of the organic product with Et2 O

    The effectiveness of neuromuscular warm-up strategies, that require no additional equipment, for preventing lower limb injuries during sports participation: a systematic review

    Get PDF
    PMCID: PMC3408383The electronic version of this article is the complete one and can be found online at: http://www.biomedcentral.com/1741-7015/10/75. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited

    First-row transition metal bis(amidinate) complexes; Planar four-coordination of Fe-II enforced by sterically demanding aryl substituents

    Get PDF
    The sterically hindered benzamidinate ligand [PhC(NAr)(2)](-) (Ar = 2,6-iPr(2)C(6)H(3)) has been employed to prepare bis(amidinate) complexes [{PhC(NAr)(2)}(2)M] of the divalent first-row transition metals Cr-Ni (1-5). For Cr (planar), Mn and Co (tetrahedral) the observed structures follow the electronic preference for the metal ion in its highest spin multiplicity, as determined by DFT calculations. Remarkably, the Fe derivative adopts a distorted planar structure while retaining the high-spin (S = 2) configuration. This rare combination due to reduced interligand steric interactions in the planar vs. the tetrahedral structure, combined with a relatively small electronic preference of Fen for the tetrahedral environment. Thus, the simple bidentate ligand N,N '-diarylbenzamidinate provides a convenient means to make this unusual species accessible for further study. (c) Wiley-VCH Verlag GmbH & Co

    Transcatheter Aortic Valve Implantation in Dialysis Patients

    Get PDF
    Background/Aims: Transcatheter aortic valve implantation (TAVI) has emerged as a new therapeutic option for high-risk patients. However, dialysis patients were excluded from all previous studies. The aim of this study is to compare the outcomes of TAVI for dialysis patients with those for patients with chronic kidney disease (CKD) stages 3 and 4 and to compare TAVI with open surgery in dialysis patients. Methods: Part I: comparison of 10 patients on chronic hemodialysis with 116 patients with non-dialysis-dependent CKD undergoing TAVI. Part II: comparison of transcatheter (n = 15) with open surgical (n = 24) aortic valve replacement in dialysis patients. Results: Part I: dialysis patients were significantly younger (72.3 vs. 82.0 years; p < 0.01). Hospital stay was significantly longer in dialysis patients (21.8 vs. 12.1 days; p = 0.01). Overall 30-day mortality was 3.17%, with no deaths among dialysis patients. Six-month survival rates were similar (log-rank p = 0.935). Part II: patient age was comparable (66.5 vs. 69.5 years; p = 0.42). Patients in the surgical group tended to stay longer in hospital than TAVI patients (29.5 vs. 22.5 days; p = 0.35). Conclusion: TAVI is a safe procedure in patients on chronic hemodialysis. Until new data become available, we find no compelling reason to refuse these patients TAVI. Copyright (C) 2012 S. Karger AG, Base

    Arachnoid cysts do not contain cerebrospinal fluid: A comparative chemical analysis of arachnoid cyst fluid and cerebrospinal fluid in adults

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Arachnoid cyst (AC) fluid has not previously been compared with cerebrospinal fluid (CSF) from the same patient. ACs are commonly referred to as containing "CSF-like fluid". The objective of this study was to characterize AC fluid by clinical chemistry and to compare AC fluid to CSF drawn from the same patient. Such comparative analysis can shed further light on the mechanisms for filling and sustaining of ACs.</p> <p>Methods</p> <p>Cyst fluid from 15 adult patients with unilateral temporal AC (9 female, 6 male, age 22-77y) was compared with CSF from the same patients by clinical chemical analysis.</p> <p>Results</p> <p>AC fluid and CSF had the same osmolarity. There were no significant differences in the concentrations of sodium, potassium, chloride, calcium, magnesium or glucose. We found significant elevated concentration of phosphate in AC fluid (0.39 versus 0.35 mmol/L in CSF; <it>p </it>= 0.02), and significantly reduced concentrations of total protein (0.30 versus 0.41 g/L; <it>p </it>= 0.004), of ferritin (7.8 versus 25.5 ug/L; <it>p </it>= 0.001) and of lactate dehydrogenase (17.9 versus 35.6 U/L; <it>p </it>= 0.002) in AC fluid relative to CSF.</p> <p>Conclusions</p> <p>AC fluid is not identical to CSF. The differential composition of AC fluid relative to CSF supports secretion or active transport as the mechanism underlying cyst filling. Oncotic pressure gradients or slit-valves as mechanisms for generating fluid in temporal ACs are not supported by these results.</p

    Two populations of X-ray pulsars produced by two types of supernovae

    No full text
    Two types of supernova are thought to produce the overwhelming majority of neutron stars in the Universe. The first type, iron-core collapse supernovae, occurs when a high-mass star develops a degenerate iron core that exceeds the Chandrasekhar limit. The second type, electron-capture supernovae, is associated with the collapse of a lower-mass oxygen-neon-magnesium core as it loses pressure support owing to the sudden capture of electrons by neon and/or magnesium nuclei. It has hitherto been impossible to identify the two distinct families of neutron stars produced in these formation channels. Here we report that a large, well-known class of neutron-star-hosting X-ray pulsars is actually composed of two distinct sub-populations with different characteristic spin periods, orbital periods and orbital eccentricities. This class, the Be/X-ray binaries, contains neutron stars that accrete material from a more massive companion star. The two sub-populations are most probably associated with the two distinct types of neutron-star-forming supernovae, with electron-capture supernovae preferentially producing system with short spin period, short orbital periods and low eccentricity. Intriguingly, the split between the two sub-populations is clearest in the distribution of the logarithm of spin period, a result that had not been predicted and which still remains to be explaine
    corecore