17,081 research outputs found

    Midcourse navigation using statistical filter theory, a manual theodolite, and symbolic computer control

    Get PDF
    Midcourse navigation using statistical filter theory, manual theodolite, and symbolic computer control applied to manned spacecraf

    En route position and time control of aircraft using Kalman filtering of radio aid data

    Get PDF
    Fixed-time-of-arrival (FTA) guidance and navigation is investigated as a possible technique capable of operation within much more stringent en route separation standards and offering significant advantages in safety, higher traffic densities, and improved scheduling reliability, both en route and in the terminal areas. This study investigated the application of FTA guidance previously used in spacecraft guidance. These FTA guidance techniques have been modified and are employed to compute the velocity corrections necessary to return an aircraft to a specified great-circle reference path in order to exercise en route time and position control throughout the entire flight. The necessary position and velocity estimates to accomplish this task are provided by Kalman filtering of data from Loran-C, VORTAC/TACAN, Doppler radar, radio or barometric altitude,and altitude rate. The guidance and navigation system was evaluated using a digital simulation of the cruise phase of supersonic and subsonic flights between San Francisco and New York City, and between New York City and London

    On the asymptotic acoustic-mode phase in red-giant stars and its dependence on evolutionary state

    Full text link
    Asteroseismic investigations based on the wealth of data now available,in particular from the CoRoT and Kepler missions, require a good understanding of the relation between the observed quantities and the properties of the underlying stellar structure. Kallinger et al. 2012 found a relation between their determination of the asymptotic phase of radial oscillations in evolved stars and the evolutionary state, separating ascending-branch red giants from helium-burning stars in the `red clump'. Here we provide a detailed analysis of this relation, which is found to derive from differences between these two classes of stars in the thermodynamic state of the convective envelope. There is potential for distinguishing red giants and clump stars based on the phase determined from observations that are too short to allow distinction based on determination of the period spacing for mixed modes. The analysis of the phase may also point to a better understanding of the potential for using the helium-ionization-induced acoustic glitch to determine the helium abundance in the envelopes of these stars.Comment: MNRAS, in the pres

    High-precision abundances of elements in Kepler LEGACY stars. Verification of trends with stellar age

    Full text link
    HARPS-N spectra with S/N > 250 and MARCS model atmospheres were used to derive abundances of C, O, Na, Mg, Al, Si, Ca, Ti, Cr, Fe, Ni, Zn, and Y in ten stars from the Kepler LEGACY sample (including the binary pair 16 Cyg A and B) selected to have metallicities in the range -0.15 < [Fe/H] < +0.15 and ages between 1 and 7 Gyr. Stellar gravities were obtained from seismic data and effective temperatures were determined by comparing non-LTE iron abundances derived from FeI and FeII lines. Available non-LTE corrections were also applied when deriving abundances of the other elements. The results support the [X/Fe]-age relations previously found for solar twins. [Mg/Fe], [Al/Fe], and [Zn/Fe] decrease by ~0.1 dex over the lifetime of the Galactic thin disk due to delayed contribution of iron from Type Ia supernovae relative to prompt production of Mg, Al, and Zn in Type II supernovae. [Y/Mg] and [Y/Al], on the other hand, increase by ~0.3 dex, which can be explained by an increasing contribution of s-process elements from low-mass AGB stars as time goes on. The trends of [C/Fe] and [O/Fe] are more complicated due to variations of the ratio between refractory and volatile elements among stars of similar age. Two stars with about the same age as the Sun show very different trends of [X/H] as a function of elemental condensation temperature Tc and for 16 Cyg, the two components have an abundance difference, which increases with Tc. These anomalies may be connected to planet-star interactions.Comment: 13 pages with 7 figures. Accepted for publication in A&

    MODELLING STOCK DYNAMICS IN THE SOUTHERN BENGUELA ECOSYSTEM FOR THE PERIOD 1978–2002

    Get PDF
    An ecosystem model of the southern Benguela was fitted to available time-series data for the period 1978–2002, to explore how changes in target fish populations in this ecosystem can be attributed to feeding interaction terms and population control patterns, the impact of fishing, and environmental forcing. Fishing patterns were estimated to explain only 2–3&#37 of the variability in the time-series, whereas an estimated productivity forcing pattern applied to phytoplankton explained 4–12&#37 of the variance represented by the sum of squares. Model settings describing prey vulnerability to their predators could explain around 40&#37 of the variability in the time-series. Modelled stock dynamics in the southern Benguela ecosystem more closely represent observed timeseries when wasp-waist control by small pelagic fish is simulated. Overall, model simulations suggest that almost half the variance in the time-series can be explained based on a combination of fishing, vulnerability settings and productivity patterns. Variation in mortalities and prey preferences over time, as well as model fits in relation to available effort series, are discussed. The study advances a model with improved parameterization and credibility to assist with an ecosystem approach to South African fisheries management. Afr. J. mar. Sci. 26: 179–19

    Modeling temporal fluctuations in avalanching systems

    Get PDF
    We demonstrate how to model the toppling activity in avalanching systems by stochastic differential equations (SDEs). The theory is developed as a generalization of the classical mean field approach to sandpile dynamics by formulating it as a generalization of Itoh's SDE. This equation contains a fractional Gaussian noise term representing the branching of an avalanche into small active clusters, and a drift term reflecting the tendency for small avalanches to grow and large avalanches to be constricted by the finite system size. If one defines avalanching to take place when the toppling activity exceeds a certain threshold the stochastic model allows us to compute the avalanche exponents in the continum limit as functions of the Hurst exponent of the noise. The results are found to agree well with numerical simulations in the Bak-Tang-Wiesenfeld and Zhang sandpile models. The stochastic model also provides a method for computing the probability density functions of the fluctuations in the toppling activity itself. We show that the sandpiles do not belong to the class of phenomena giving rise to universal non-Gaussian probability density functions for the global activity. Moreover, we demonstrate essential differences between the fluctuations of total kinetic energy in a two-dimensional turbulence simulation and the toppling activity in sandpiles.Comment: 14 pages, 11 figure

    Correlations of record events as a test for heavy-tailed distributions

    Full text link
    A record is an entry in a time series that is larger or smaller than all previous entries. If the time series consists of independent, identically distributed random variables with a superimposed linear trend, record events are positively (negatively) correlated when the tail of the distribution is heavier (lighter) than exponential. Here we use these correlations to detect heavy-tailed behavior in small sets of independent random variables. The method consists of converting random subsets of the data into time series with a tunable linear drift and computing the resulting record correlations.Comment: Revised version, to appear in Physical Review Letter

    What Fraction of Boron-8 Solar Neutrinos arrive at the Earth as a nu_2 mass eigenstate?

    Full text link
    We calculate the fraction of B^8 solar neutrinos that arrive at the Earth as a nu_2 mass eigenstate as a function of the neutrino energy. Weighting this fraction with the B^8 neutrino energy spectrum and the energy dependence of the cross section for the charged current interaction on deuteron with a threshold on the kinetic energy of the recoil electrons of 5.5 MeV, we find that the integrated weighted fraction of nu_2's to be 91 \pm 2 % at the 95% CL. This energy weighting procedure corresponds to the charged current response of the Sudbury Neutrino Observatory (SNO). We have used SNO's current best fit values for the solar mass squared difference and the mixing angle, obtained by combining the data from all solar neutrino experiments and the reactor data from KamLAND. The uncertainty on the nu_2 fraction comes primarily from the uncertainty on the solar delta m^2 rather than from the uncertainty on the solar mixing angle or the Standard Solar Model. Similar results for the Super-Kamiokande experiment are also given. We extend this analysis to three neutrinos and discuss how to extract the modulus of the Maki-Nakagawa-Sakata mixing matrix element U_{e2} as well as place a lower bound on the electron number density in the solar B^8 neutrino production region.Comment: 23 pages, 8 postscript figures, latex. Dedicated to the memory of John Bahcall who championed solar neutrinos for many lonely year

    2D orbital-like magnetic order in La2−xSrxCuO4{\rm La_{2-x}Sr_xCuO_4}

    Full text link
    In high temperature copper oxides superconductors, a novel magnetic order associated with the pseudogap phase has been identified in two different cuprate families over a wide region of temperature and doping. We here report the observation below 120 K of a similar magnetic ordering in the archetypal cuprate La2−xSrxCuO4{\rm La_{2-x}Sr_xCuO_4} (LSCO) system for x=0.085. In contrast to the previous reports, the magnetic ordering in LSCO is {\it\bf only} short range with an in-plane correlation length of ∼\sim 10 \AA\ and is bidimensional (2D). Such a less pronounced order suggests an interaction with other electronic instabilities. In particular, LSCO also exhibits a strong tendency towards stripes ordering at the expense of the superconducting state.Comment: 4 figures, submitted to Phys. Rev. Let
    • …
    corecore