100 research outputs found

    Metabolomic Profiling Reveals Distinct and Mutual Effects of Diet and Inflammation in Shaping Systemic Metabolism in Ldlr(-/-) Mice

    Get PDF
    Changes in modern dietary habits such as consumption of Western-type diets affect physiology on several levels, including metabolism and inflammation. It is currently unclear whether changes in systemic metabolism due to dietary interventions are long-lasting and affect acute inflammatory processes. Here, we investigated how high-fat diet (HFD) feeding altered systemic metabolism and the metabolomic response to inflammatory stimuli. We conducted metabolomic profiling of sera collected from Ldlr(-/-) mice on either regular chow diet (CD) or HFD, and after an additional low-dose lipopolysaccharide (LPS) challenge. HFD feeding, as well as LPS treatment, elicited pronounced metabolic changes. HFD qualitatively altered the systemic metabolic response to LPS; particularly, serum concentrations of fatty acids and their metabolites varied between LPS-challenged mice on HFD or CD, respectively. To investigate whether systemic metabolic changes were sustained long-term, mice fed HFD were shifted back to CD after four weeks (HFD \u3e CD). When shifted back to CD, serum metabolites returned to baseline levels, and so did the response to LPS. Our results imply that systemic metabolism rapidly adapts to dietary changes. The profound systemic metabolic rewiring observed in response to diet might affect immune cell reprogramming and inflammatory responses

    An Empirical Analysis of Web Site Stickiness

    Get PDF
    Even though we have seen an exponential growth in the number of Web sites and the number of users, little is known about Web usage at the level of the individual. This paper aims to overcome this lack of knowledge on individual usage patterns. Based on previous findings on saturation of Web usage, we use data from 1995-1998 on residential Web usage conducted as part of the HomeNet project to examine if groups of Web users differ in loyalty to Web sites. We also measure the stickiness of the most popular Web sites in the HomeNet sample. The results help us to understand how one should think of Internet usage and have important implications for Internet marketing and strategy

    A Session Based Empirical Investigation of Web Usage

    Get PDF
    This paper reports the results of a study of Web usage of 139 users over a 8 month period of time. It uses a longitudinal Web log analysis of the URLs accessed during 33916 user-days of Web usage. It aims to detect changes in Web usage associated with increased experience of using the Web. Specifically, it answers the question whether or not users shift from undirected browsing in the Web to directed access of Web sites as they gain expertise in using the Web. We used a session-based approach to measure individual Web usage. The results of our study have several important implications both for Business to Consumer electronic commerce and for public policy as it pertains to the digital divide

    Multicenter Evaluation of a 0-Hour/1-Hour Algorithm in the Diagnosis of Myocardial Infarction With High-Sensitivity Cardiac Troponin T

    Get PDF
    Study objectiveWe aim to prospectively validate the diagnostic accuracy of the recently developed 0-h/1-h algorithm, using high-sensitivity cardiac troponin T (hs-cTnT) for the early rule-out and rule-in of acute myocardial infarction.MethodsWe enrolled patients presenting with suspected acute myocardial infarction and recent (<6 hours) onset of symptoms to the emergency department in a global multicenter diagnostic study. Hs-cTnT (Roche Diagnostics) and sensitive cardiac troponin I (Siemens Healthcare) were measured at presentation and after 1 hour, 2 hours, and 4 to 14 hours in a central laboratory. Patient triage according to the predefined hs-cTnT 0-hour/1-hour algorithm (hs-cTnT below 12 ng/L and Δ1 hour below 3 ng/L to rule out; hs-cTnT at least 52 ng/L or Δ1 hour at least 5 ng/L to rule in; remaining patients to the “observational zone”) was compared against a centrally adjudicated final diagnosis by 2 independent cardiologists (reference standard). The final diagnosis was based on all available information, including coronary angiography and echocardiography results, follow-up data, and serial measurements of sensitive cardiac troponin I, whereas adjudicators remained blinded to hs-cTnT.ResultsAmong 1,282 patients enrolled, acute myocardial infarction was the final diagnosis for 213 (16.6%) patients. Applying the hs-cTnT 0-hour/1-hour algorithm, 813 (63.4%) patients were classified as rule out, 184 (14.4%) were classified as rule in, and 285 (22.2%) were triaged to the observational zone. This resulted in a negative predictive value and sensitivity for acute myocardial infarction of 99.1% (95% confidence interval [CI] 98.2% to 99.7%) and 96.7% (95% CI 93.4% to 98.7%) in the rule-out zone (7 patients with false-negative results), a positive predictive value and specificity for acute myocardial infarction of 77.2% (95% CI 70.4% to 83.0%) and 96.1% (95% CI 94.7% to 97.2%) in the rule-in zone, and a prevalence of acute myocardial infarction of 22.5% in the observational zone.ConclusionThe hs-cTnT 0-hour/1-hour algorithm performs well for early rule-out and rule-in of acute myocardial infarction

    Bitter taste signaling in tracheal epithelial brush cells elicits innate immune responses to bacterial infection

    Get PDF
    Constant exposure of the airways to inhaled pathogens requires efficient early immune responses protecting against infections. How bacteria on the epithelial surface are detected and first-line protective mechanisms are initiated are not well understood. We have recently shown that tracheal brush cells (BCs) express functional taste receptors. Here we report that bitter taste signaling in murine BCs induces neurogenic inflammation. We demonstrate that BC signaling stimulates adjacent sensory nerve endings in the trachea to release the neuropeptides CGRP and substance P that mediate plasma extravasation, neutrophil recruitment, and diapedesis. Moreover, we show that bitter tasting quorum-sensing molecules from Pseudomonas aeruginosa activate tracheal BCs. BC signaling depends on the key taste transduction gene Trpm5, triggers secretion of immune mediators, among them the most abundant member of the complement system, and is needed to combat P. aeruginosa infections. Our data provide functional insight into firstline defense mechanisms against bacterial infections of the lung

    Bitter taste signaling in tracheal epithelial brush cells elicits innate immune responses to bacterial infection.

    Full text link
    peer reviewedConstant exposure of the airways to inhaled pathogens requires efficient early immune responses protecting against infections. How bacteria on the epithelial surface are detected and first-line protective mechanisms are initiated are not well understood. We have recently shown that tracheal brush cells (BCs) express functional taste receptors. Here we report that bitter taste signaling in murine BCs induces neurogenic inflammation. We demonstrate that BC signaling stimulates adjacent sensory nerve endings in the trachea to release the neuropeptides CGRP and substance P that mediate plasma extravasation, neutrophil recruitment, and diapedesis. Moreover, we show that bitter tasting quorum-sensing molecules from Pseudomonas aeruginosa activate tracheal BCs. BC signaling depends on the key taste transduction gene Trpm5, triggers secretion of immune mediators, among them the most abundant member of the complement system, and is needed to combat P. aeruginosa infections. Our data provide functional insight into first-line defense mechanisms against bacterial infections of the lung

    Integrated genomic characterization of pancreatic ductal adenocarcinoma

    Get PDF
    We performed integrated genomic, transcriptomic, and proteomic profiling of 150 pancreatic ductal adenocarcinoma (PDAC) specimens, including samples with characteristic low neoplastic cellularity. Deep whole-exome sequencing revealed recurrent somatic mutations in KRAS, TP53, CDKN2A, SMAD4, RNF43, ARID1A, TGFβR2, GNAS, RREB1, and PBRM1. KRAS wild-type tumors harbored alterations in other oncogenic drivers, including GNAS, BRAF, CTNNB1, and additional RAS pathway genes. A subset of tumors harbored multiple KRAS mutations, with some showing evidence of biallelic mutations. Protein profiling identified a favorable prognosis subset with low epithelial-mesenchymal transition and high MTOR pathway scores. Associations of non-coding RNAs with tumor-specific mRNA subtypes were also identified. Our integrated multi-platform analysis reveals a complex molecular landscape of PDAC and provides a roadmap for precision medicine
    corecore