335 research outputs found

    Terms of Engagement

    Get PDF

    Percutaneous Penetration And Metabolism Of Topical [14C]Flutamide in Men

    Get PDF
    This study was designed to determine the fate of the nonsteroid antiandrogen flutamide in men following a single 6-hr topical application of 5mg 14C-labeled drug dissolved in 50% ethanol/50% propylene glycol. Analysis of 0-120hr urine shows at least 16% of the applied flutamide is absorbed. Fifty-six percent of the dose is recovered from the site of application with cotton swabs moistened with 50% ethanol/50% propylene glycol. Flutamide plasma levels peak in 4 to 6hr at about 1.3 ng/ml and then decline rapidly to about 0.08 ng/ml 24hr after application. Only 13% of plasma 14C is associated with flutamide 6hr after drug application. There are at least 10 plasma metabolites of which 6 have been tentatively identified. These are α,α,α-trifluoro-4-amino-m-acetotoluidide (A); α,α,α-trifluoro-4-amino-2-methyl-m-lactotoluidide (B); α,α,α-trifluoro-4-nitro-m-acetotoluidide (C); α,α,α-trifluoro-2-melhyl-4-nitro-m-lactotoluidide (D); α,α,α-trifluoro-4-amino-2-mehtyl -m-propionotoluidide (E); and α,α,α-trifluoro-6-nitro-m-toluidine (F). (D) is the major plasma metabolite, and its concentration exceeds flutamide's between 8 and 24hr after drug. All the plasma metabolites are found in 0-24hr urine in minor amounts. An additional metabolite, α,α,α-trifluoro-amino-5-nitro p-cresol (G), accounts for 27% of urine 14C

    Will the Foundation tree (Eastern Hemlock Trees) go extinct?

    Get PDF

    Intraclonal Variation in Wood Density of Trembling Aspen in Alberta

    Get PDF
    Four trees from each of three putative clones of trembling aspen (Populus tremuloides Michx.) at one site in north-central Alberta were sampled to determine the patterns of wood density variation within stems and within clones. Sample disks were removed at five heights from each tree to examine variation among cardinal directions and across the southern radius at each height. Although only three clones were sampled, there were significant differences (0.05 level) among clones. Wood density tends to be high at the bottom of the tree, decreases to a minimum at midheight, then increases again near the top of the tree. In the radial direction, wood density is high near the pith (at all heights), decreases, then increases again in the mature wood zone (after rings 15-20+). Average wood density values within the twelve stems varied from 0.348 g/cc to 0.402 g/cc

    Exact Asymptotic Results for a Model of Sequence Alignment

    Full text link
    Finding analytically the statistics of the longest common subsequence (LCS) of a pair of random sequences drawn from c alphabets is a challenging problem in computational evolutionary biology. We present exact asymptotic results for the distribution of the LCS in a simpler, yet nontrivial, variant of the original model called the Bernoulli matching (BM) model which reduces to the original model in the large c limit. We show that in the BM model, for all c, the distribution of the asymptotic length of the LCS, suitably scaled, is identical to the Tracy-Widom distribution of the largest eigenvalue of a random matrix whose entries are drawn from a Gaussian unitary ensemble. In particular, in the large c limit, this provides an exact expression for the asymptotic length distribution in the original LCS problem.Comment: 4 pages Revtex, 2 .eps figures include

    Use of multiphoton tomography and fluorescence lifetime imaging to investigate skin pigmentation in vivo

    Get PDF
    There is a growing body of literature showing the usefulness of multiphoton tomography (MPT) and fluorescence lifetime imaging for in situ characterization of skin constituents and the ensuing development of noninvasive diagnostic tools against skin diseases. Melanin and pigmentation-associated skin cancers constitute some of the major applications. We show that MPT and fluorescence lifetime imaging can be used to measure changes in cutaneous melanin concentration and that these can be related to the visible skin color. Melanin in the skin of African, Indian, Caucasian, and Asian volunteers is detected on the basis of its emission wavelength and fluorescence lifetimes in solution and in a melanocyte-keratinocyte cell culture. Fluorescence intensity is used to characterize the melanin content and distribution as a function of skin type and depth into the skin (stratum granulosum and stratum basale). The measured fluorescence intensities in given skin types agree with melanin amounts reported by others using biopsies. Our results suggest that spatial distribution of melanin in skin can be studied using MPT and fluorescence lifetime imaging, but further studies are needed to ascertain that the method can resolve melanin amount in smaller depth intervals

    Bethe Ansatz in the Bernoulli Matching Model of Random Sequence Alignment

    Full text link
    For the Bernoulli Matching model of sequence alignment problem we apply the Bethe ansatz technique via an exact mapping to the 5--vertex model on a square lattice. Considering the terrace--like representation of the sequence alignment problem, we reproduce by the Bethe ansatz the results for the averaged length of the Longest Common Subsequence in Bernoulli approximation. In addition, we compute the average number of nucleation centers of the terraces.Comment: 14 pages, 5 figures (some points are clarified

    Monitoring Dermal Penetration and Permeation Kinetics of Topical Products; the Role of Raman Microspectroscopy

    Get PDF
    The study of human skin represents an important area of research and development in dermatology, toxicology, pharmacology and cosmetology, in order to assess the effects of exogenous agents, their interaction, their absorption mechanism, and/or their toxicity towards the different cutaneous structures. The processes can be parameterised by mathematical models of diffusion, of varying degrees of complexity, and are commonly measured by Franz cell diffusion, in vitro, and tape stripping, in vitro or in vivo, techniques which are recognised by regulatory bodies for commercialisation of dermally applied products. These techniques do not directly provide chemically specific measurement of the penetration and/or permeation of formulations in situ, however. Raman microspectroscopy provides a non-destructive, non-invasive and chemically specific methodology for in vitro, and in vivo investigations, in-situ, and can provide a powerful alternative to the current gold standard methods approved by regulatory bodies. This review provides an analysis of the current state of art of the field of monitoring dermal penetration and permeation kinetics of topical products, in vitro and in vivo, as well as the regulatory requirements of international guidelines governing them. It furthermore outlines developments in the analysis of skin using Raman microspectroscopy, towards the most recent demonstrations of quantitative monitoring of the penetration and permeation kinetics of topical products in situ, for in vitro and in vivo applications, before discussing the challenges and future perspectives of the field

    Estimating the Analytical Performance of Raman Spectroscopy for Quantification of Active Ingredients in Human Stratum Corneum

    Get PDF
    Confocal Raman microscopy (CRM) has become a versatile technique that can be applied routinely to monitor skin penetration of active molecules. In the present study, CRM coupled to multivariate analysis (namely PLSR—partial least squares regression) is used for the quantitative measurement of an active ingredient (AI) applied to isolated (ex vivo) human stratum corneum (SC), using systematically varied doses of resorcinol, as model compound, and the performance is quantified according to key figures of merit defined by regulatory bodies (ICH, FDA, and EMA). A methodology is thus demonstrated to establish the limit of detection (LOD), precision, accuracy, sensitivity (SEN), and selectivity (SEL) of the technique, and the performance according to these key figures of merit is compared to that of similar established methodologies, based on studies available in literature. First, principal components analysis (PCA) was used to examine the variability within the spectral data set collected. Second, ratios calculated from the area under the curve (AUC) of characteristic resorcinol and proteins/lipids bands (1400–1500 cm−1) were used to perform linear regression analysis of the Raman spectra. Third, cross-validated PLSR analysis was applied to perform quantitative analysis in the fingerprint region. The AUC results show clearly that the intensities of Raman features in the spectra collected are linearly correlated to resorcinol concentrations in the SC (R2 = 0.999) despite a heterogeneity in the distribution of the active molecule in the samples. The Root Mean Square Error of Cross-Validation (RMSECV) (0.017 mg resorcinol/mg SC), The Root Mean Square of Prediction (RMSEP) (0.015 mg resorcinol/mg SC), and R2 (0.971) demonstrate the reliability of the linear regression constructed, enabling accurate quantification of resorcinol. Furthermore, the results have enabled the determination, for the first time, of numerical criteria to estimate analytical performances of CRM, including LOD, precision using bias corrected mean square error prediction (BCMSEP), sensitivity, and selectivity, for quantification of the performance of the analytical technique. This is one step further towards demonstrating that Raman spectroscopy complies with international guidelines and to establishing the technique as a reference and approved tool for permeation studies

    Comparison of Spectra in Unsequenced Species

    Get PDF
    International audienceWe introduce a new algorithm for the mass spectromet- ric identication of proteins. Experimental spectra obtained by tandem MS/MS are directly compared to theoretical spectra generated from pro- teins of evolutionarily closely related organisms. This work is motivated by the need of a method that allows the identication of proteins of unsequenced species against a database containing proteins of related organisms. The idea is that matching spectra of unknown peptides to very similar MS/MS spectra generated from this database of annotated proteins can lead to annotate unknown proteins. This process is similar to ortholog annotation in protein sequence databases. The difficulty with such an approach is that two similar peptides, even with just one mod- ication (i.e. insertion, deletion or substitution of one or several amino acid(s)) between them, usually generate very dissimilar spectra. In this paper, we present a new dynamic programming based algorithm: Packet- SpectralAlignment. Our algorithm is tolerant to modications and fully exploits two important properties that are usually not considered: the notion of inner symmetry, a relation linking pairs of spectrum peaks, and the notion of packet inside each spectrum to keep related peaks together. Our algorithm, PacketSpectralAlignment is then compared to SpectralAlignment [1] on a dataset of simulated spectra. Our tests show that PacketSpectralAlignment behaves better, in terms of results and execution tim
    corecore