13 research outputs found

    A selected ion flow tube study of the reactions of gas-phase cations with PSCl3

    Get PDF
    A selected ion flow tube was used to investigate the positive ion chemistry of thiophosphoryl chloride, PSCl3_3. Rate coefficients and ion product branching ratios have been determined at room temperature for reactions with nineteen cations ; H3_3O+^+, CF3+_3^+, CF+^+, NO+^+, NO2+_2^+, SF2+_2^+, SF+^+, CF2+_2^+, O2+_2^+, H2_2O+^+, N2_2O+^+, O+^+, CO2+_2^+, CO+^+, N+^+, N2+_2^+, Ar+^+, F+^+ and Ne+^+ (in order of increasing recombination energy). Complementary data described in the previous paper have been obtained for this molecule via the observation of threshold photoelectron photoion coincidences. For ions whose recombination energies are in the range 10-22 eV, comparisons are made between the product ion branching rations of PSCl3_3 from photoionisation and from ion-molecule reactions. In most instances, the data from the two experiments are well correlated, suggesting that long-range charge transfer is the dominant mechanism for these ion-molecule reactions ; the agreement is particularly good for the atomic ions Ar+^+, F+^+ and Ne+^+. Some reactions (e.g. O2+_2^+ + PSCl3_3), however, exhibit significant differences; short-range charge transfer must then be occurring following the formation of an ion-molecule complex. For ions whose recombination energies are less than 10 eV (i.e. H3_3O+^+, CF3+_3^+, CF+^+ and NO+^+), reactions can only occur via a chemical process in which bonds are broken and formed, because the recombination energy of the cation is less than the ionisation energy of PSCl3_3

    Characterisation of a new VUV beamline at the Daresbury SRS using a dispersed fluorescence apparatus incorporating CCD detection

    Get PDF
    The design and performance of a new normal incidence monochromator at the Daresbury Synchrotron Radiation Source, optimised for experiments requiring high flux of vacuum-UV radiation, are described. The re-developed beamline 3.1, based on the Wadsworth design of monochromator, is the source of tunable vacuum-UV photons in the range 4 – 31 eV, providing over two orders of magnitude more flux than the vacuum-UV, Seya monochromator in its previous manifestation. The undispersed and dispersed fluorescence spectra resulting from photoexcitation of N2_2, CO2_2, CF4_4 and C6_6F6_6 are presented. Emitting species observed were N2+_2^+ B2Σu+^2\Sigma_u^+ - X2Σg+^2\Sigma_g^+, CO2+_2^+ A2Πu^2\Pi_u - X2Πg^2\Pi_g and B2Σu+^2\Sigma_u^+ - X2Πg^2\Pi_g, CF4_4+^+ C2^2T2_2 - X2^2T1_1 and C2^2T2_2 - A2^2T2_2, CF3_3* 2^2A2^’_2 - 2^2A2^”_2, and C6_6F6+_6^+ B2^2A2u_{2u} - X2^2E1g_{1g}. A CCD multi-channel detector has significantly reduced the time period needed to record dispersed fluorescence spectra with a comparable signal-to-noise ratio

    Genetic mechanisms of critical illness in COVID-19.

    Get PDF
    Host-mediated lung inflammation is present1, and drives mortality2, in the critical illness caused by coronavirus disease 2019 (COVID-19). Host genetic variants associated with critical illness may identify mechanistic targets for therapeutic development3. Here we report the results of the GenOMICC (Genetics Of Mortality In Critical Care) genome-wide association study in 2,244 critically ill patients with COVID-19 from 208 UK intensive care units. We have identified and replicated the following new genome-wide significant associations: on chromosome 12q24.13 (rs10735079, P = 1.65 × 10-8) in a gene cluster that encodes antiviral restriction enzyme activators (OAS1, OAS2 and OAS3); on chromosome 19p13.2 (rs74956615, P = 2.3 × 10-8) near the gene that encodes tyrosine kinase 2 (TYK2); on chromosome 19p13.3 (rs2109069, P = 3.98 ×  10-12) within the gene that encodes dipeptidyl peptidase 9 (DPP9); and on chromosome 21q22.1 (rs2236757, P = 4.99 × 10-8) in the interferon receptor gene IFNAR2. We identified potential targets for repurposing of licensed medications: using Mendelian randomization, we found evidence that low expression of IFNAR2, or high expression of TYK2, are associated with life-threatening disease; and transcriptome-wide association in lung tissue revealed that high expression of the monocyte-macrophage chemotactic receptor CCR2 is associated with severe COVID-19. Our results identify robust genetic signals relating to key host antiviral defence mechanisms and mediators of inflammatory organ damage in COVID-19. Both mechanisms may be amenable to targeted treatment with existing drugs. However, large-scale randomized clinical trials will be essential before any change to clinical practice

    Common, low-frequency, rare, and ultra-rare coding variants contribute to COVID-19 severity

    Get PDF
    The combined impact of common and rare exonic variants in COVID-19 host genetics is currently insufficiently understood. Here, common and rare variants from whole-exome sequencing data of about 4000 SARS-CoV-2-positive individuals were used to define an interpretable machine-learning model for predicting COVID-19 severity. First, variants were converted into separate sets of Boolean features, depending on the absence or the presence of variants in each gene. An ensemble of LASSO logistic regression models was used to identify the most informative Boolean features with respect to the genetic bases of severity. The Boolean features selected by these logistic models were combined into an Integrated PolyGenic Score that offers a synthetic and interpretable index for describing the contribution of host genetics in COVID-19 severity, as demonstrated through testing in several independent cohorts. Selected features belong to ultra-rare, rare, low-frequency, and common variants, including those in linkage disequilibrium with known GWAS loci. Noteworthily, around one quarter of the selected genes are sex-specific. Pathway analysis of the selected genes associated with COVID-19 severity reflected the multi-organ nature of the disease. The proposed model might provide useful information for developing diagnostics and therapeutics, while also being able to guide bedside disease management. © 2021, The Author(s)

    Effect of angiotensin-converting enzyme inhibitor and angiotensin receptor blocker initiation on organ support-free days in patients hospitalized with COVID-19

    Get PDF
    IMPORTANCE Overactivation of the renin-angiotensin system (RAS) may contribute to poor clinical outcomes in patients with COVID-19. Objective To determine whether angiotensin-converting enzyme (ACE) inhibitor or angiotensin receptor blocker (ARB) initiation improves outcomes in patients hospitalized for COVID-19. DESIGN, SETTING, AND PARTICIPANTS In an ongoing, adaptive platform randomized clinical trial, 721 critically ill and 58 non–critically ill hospitalized adults were randomized to receive an RAS inhibitor or control between March 16, 2021, and February 25, 2022, at 69 sites in 7 countries (final follow-up on June 1, 2022). INTERVENTIONS Patients were randomized to receive open-label initiation of an ACE inhibitor (n = 257), ARB (n = 248), ARB in combination with DMX-200 (a chemokine receptor-2 inhibitor; n = 10), or no RAS inhibitor (control; n = 264) for up to 10 days. MAIN OUTCOMES AND MEASURES The primary outcome was organ support–free days, a composite of hospital survival and days alive without cardiovascular or respiratory organ support through 21 days. The primary analysis was a bayesian cumulative logistic model. Odds ratios (ORs) greater than 1 represent improved outcomes. RESULTS On February 25, 2022, enrollment was discontinued due to safety concerns. Among 679 critically ill patients with available primary outcome data, the median age was 56 years and 239 participants (35.2%) were women. Median (IQR) organ support–free days among critically ill patients was 10 (–1 to 16) in the ACE inhibitor group (n = 231), 8 (–1 to 17) in the ARB group (n = 217), and 12 (0 to 17) in the control group (n = 231) (median adjusted odds ratios of 0.77 [95% bayesian credible interval, 0.58-1.06] for improvement for ACE inhibitor and 0.76 [95% credible interval, 0.56-1.05] for ARB compared with control). The posterior probabilities that ACE inhibitors and ARBs worsened organ support–free days compared with control were 94.9% and 95.4%, respectively. Hospital survival occurred in 166 of 231 critically ill participants (71.9%) in the ACE inhibitor group, 152 of 217 (70.0%) in the ARB group, and 182 of 231 (78.8%) in the control group (posterior probabilities that ACE inhibitor and ARB worsened hospital survival compared with control were 95.3% and 98.1%, respectively). CONCLUSIONS AND RELEVANCE In this trial, among critically ill adults with COVID-19, initiation of an ACE inhibitor or ARB did not improve, and likely worsened, clinical outcomes. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT0273570

    State-Resolved Dynamics of the CN(B 2

    No full text

    Raman scattering techniques for defense and security applications

    No full text
    In this review we discuss the recent advances in the application of Raman scattering and related techniques to the detection of chemical and biological threat agents. One of the main aims of this review is to provide a new perspective on the application of advanced and emerging Raman techniques such as surface-enhanced Raman, spatially-offset Raman, waveguide-enhanced and coherent Raman spectroscopies, respectively, to the detection of threat agents such as explosives, toxins, viruses and bacteria. Combination with multivariate and computational analysis to augment the analytical abilities of Raman techniques as well as hyphenation and integration with various field deployment strategies such as robotic and stand-off detection are discussed. Importantly this interplay between the detection technique, analysis and engineering technology will be essential for developing powerful solutions for field applications in defence and security
    corecore