17 research outputs found

    Effective population size of Culex quinquefasciatus under insecticide-based vector management and following Hurricane Harvey in Harris County, Texas

    Get PDF
    Introduction:Culex quinquefasciatus is a mosquito species of significant public health importance due to its ability to transmit multiple pathogens that can cause mosquito-borne diseases, such as West Nile fever and St. Louis encephalitis. In Harris County, Texas, Cx. quinquefasciatus is a common vector species and is subjected to insecticide-based management by the Harris County Public Health Department. However, insecticide resistance in mosquitoes has increased rapidly worldwide and raises concerns about maintaining the effectiveness of vector control approaches. This concern is highly relevant in Texas, with its humid subtropical climate along the Gulf Coast that provides suitable habitat for Cx. quinquefasciatus and other mosquito species that are known disease vectors. Therefore, there is an urgent and ongoing need to monitor the effectiveness of current vector control programs.Methods: In this study, we evaluated the impact of vector control approaches by estimating the effective population size of Cx. quinquefasciatus in Harris County. We applied Approximate Bayesian Computation to microsatellite data to estimate effective population size. We collected Cx. quinquefasciatus samples from two mosquito control operation areas; 415 and 802, during routine vector monitoring in 2016 and 2017. No county mosquito control operations were applied at area 415 in 2016 and 2017, whereas extensive adulticide spraying operations were in effect at area 802 during the summer of 2016. We collected data for eighteen microsatellite markers for 713 and 723 mosquitoes at eight timepoints from 2016 to 2017 in areas 415 and 802, respectively. We also investigated the impact of Hurricane Harvey’s landfall in the Houston area in August of 2017 on Cx. quinquefasciatus population fluctuation.Results: We found that the bottleneck scenario was the most probable historical scenario describing the impact of the winter season at area 415 and area 802, with the highest posterior probability of 0.9167 and 0.4966, respectively. We also detected an expansion event following Hurricane Harvey at area 802, showing a 3.03-fold increase in 2017.Discussion: Although we did not detect significant effects of vector control interventions, we found considerable influences of the winter season and a major hurricane on the effective population size of Cx. quinquefasciatus. The fluctuations in effective population size in both areas showed a significant seasonal pattern. Additionally, the significant population expansion following Hurricane Harvey in 2017 supports the necessity for post-hurricane vector-control interventions

    A proposed framework for the development and qualitative evaluation of West Nile virus models and their application to local public health decision-making

    Get PDF
    West Nile virus(WNV) is a globally distributed mosquito-borne virus of great public health concern. The number of WNV human cases and mosquito infection patterns vary in space and time. Many statistical models have been developed to understand and predict WNV geographic and temporal dynamics. However, these modeling efforts have been disjointed with little model comparison and inconsistent validation. In this paper, we describe a framework to unify and standardize WNV modeling efforts nationwide. WNV risk, detection, or warning models for this review were solicited from active research groups working in different regions of the United States. A total of 13 models were selected and described. The spatial and temporal scales of each model were compared to guide the timing and the locations for mosquito and virus surveillance, to support mosquito vector control decisions, and to assist in conducting public health outreach campaigns at multiple scales of decision-making. Our overarching goal is to bridge the existing gap between model development, which is usually conducted as an academic exercise, and practical model applications, which occur at state, tribal, local, or territorial public health and mosquito control agency levels. The proposed model assessment and comparison framework helps clarify the value of individual models for decision-making and identifies the appropriate temporal and spatial scope of each model. This qualitative evaluation clearly identifies gaps in linking models to applied decisions and sets the stage for a quantitative comparison of models. Specifically, whereas many coarse-grained models (county resolution or greater) have been developed, the greatest need is for fine-grained, short-term planning models (m–km, days–weeks) that remain scarce. We further recommend quantifying the value of information for each decision to identify decisions that would benefit most from model input

    Impact of the V410L kdr mutation and co-occurring genotypes at kdr sites 1016 and 1534 in the VGSC on the probability of survival of the mosquito Aedes aegypti (L.) to Permanone in Harris County, TX, USA.

    No full text
    Harris County, TX, is the third most populous county in the USA and upon detection of arboviruses Harris County Public Health applies insecticides (e.g., pyrethroid-based Permanone 31-66) against adults of Culex quinquefasciatus to prevent disease transmission. Populations of Aedes aegypti, while not yet a target of public health control, are likely affected by pyrethroid exposure. As this species is a vector of emerging arboviruses, its resistance status to Permanone and the kdr mutations in the voltage-gated sodium channel (VGSC) associated with pyrethroid resistance were investigated. We examined females of known genotype at the V1016I and F1534C sites (N = 716) for their genotype at the 410 amino acid position in the VGSC, and for the influence of their kdr genotype on survival to Permanone at three different distances from the insecticide source in field tests. Most females (81.8%) had at least one resistant L allele at the 410 position, being the first report of the V410L mutation in Ae. aegypti for Texas. When only genotypes at the 410 position were analyzed, the LL genotype exhibited higher survivorship than VL or VV. Out of 27 possible tri-locus kdr genotypes only 23 were found. Analyses of the probability of survival of tri-locus genotypes and for the V410L genotype using a multivariate logistic regression model including area, distance, and genotype found significant interactions between distance and genotype. When only the most common tri-locus genotypes were analyzed (LL/II/CC, 48.2%; VL/II/CC, 19.1%; and VV/II/CC, 10.1%) genotype had no effect on survival, but significant interactions of distance and genotype were found. This indicated that the V410L kdr allele increased survival probability at certain distances. Genotypes did not differ in survivorship at 7.62-m, but LL/II/CC had higher survivorship than VL/II/CC at 15.24- and 22.86-m. The model also identified differences in survivorship among the operational areas investigated

    Independent evaluation of Wolbachia infected male mosquito releases for control of Aedes aegypti in Harris County, Texas, using a Bayesian abundance estimator.

    No full text
    Among disease vectors, Aedes aegypti (L.) (Diptera: Culicidae) is one of the most insidious species in the world. The disease burden created by this species has dramatically increased in the past 50 years, and during this time countries have relied on pesticides for control and prevention of viruses borne by Ae. aegypti. The small number of available insecticides with different modes of action had led to increases in insecticide resistance, thus, strategies, like the "Incompatible Insect Technique" using Wolbachia's cytoplasmic incompatibility are desirable. We evaluated the effect of releases of Wolbachia infected Ae. aegypti males on populations of wild Ae. aegypti in the metropolitan area of Houston, TX. Releases were conducted by the company MosquitoMate, Inc. To estimate mosquito population reduction, we used a mosquito abundance Bayesian hierarchical estimator that accounted for inefficient trapping. MosquitoMate previously reported a reduction of 78% for an intervention conducted in Miami, FL. In this experiment we found a reduction of 93% with 95% credibility intervals of 86% and 96% after six weeks of continual releases. A similar result was reported by Verily Life Sciences, 96% [94%, 97%], in releases made in Fresno, CA

    Detection of the Nav channel kdr-like mutation and modeling of factors affecting survivorship of Culex quinquefasciatus mosquitoes from six areas of Harris County (Houston), Texas, after permethrin field-cage tests.

    No full text
    Culex quinquefasciatus is one of the most important mosquito vectors of arboviruses. Currently, the fastest approach to control disease transmission is the application of synthetic adulticide insecticides. However, in highly populated urban centers the development of insecticide resistance in mosquito populations could impair insecticide efficacy and therefore, disease control. To assess the effect of resistance on vector control, females of Cx. quinquefasciatus collected from six mosquito control operational areas in Harris County, Texas, were treated in field cage tests at three different distances with the pyrethroid Permanone® 31-66 applied at the operational rate. Females were analyzed by sequencing and/or diagnostic PCR using de novo designed primers for detecting the kdr-like mutation in the voltage-gated sodium channel (L982F; TTA to TTT) (house fly kdr canonical mutation L1014F). Females from the Cx. quinquefasciatus susceptible Sebring strain and those from the six operational areas placed at 30.4 m from the treatment source were killed in the tests, while 14% of field-collected mosquitoes survived at 60.8 m, and 35% at 91.2 m from the source. The diagnostic PCR had a with 97.5% accuracy to detect the kdr-like mutation. Pyrethroid resistant mosquitoes carrying the L982F mutation were broadly distributed in Harris County at high frequency. Among mosquitoes analyzed (n = 1,028), the kdr-kdr genotype was prevalent (81.2%), the kdr-s genotype was 18%, and s-s mosquitoes were less than 1% (n = 8). A logistic regression model estimated an equal probability of survival for the genotypes kdr-kdr and kdr-s in all areas analyzed. Altogether, our results point to a high-risk situation for the pyrethroid-based arboviral disease control in Harris County

    Genetic Analysis of Invasive <i>Aedes albopictus</i> Populations in Los Angeles County, California and Its Potential Public Health Impact

    Get PDF
    <div><p>The Asian tiger mosquito, <i>Aedes albopictus</i>, is an anthropophilic aggressive daytime-biting nuisance and an efficient vector of certain arboviruses and filarial nematodes. Over the last 30 years, this species has spread rapidly through human travel and commerce from its native tropical forests of Asia to every continent except Antarctica. In 2011, a population of Asian tiger mosquito (<i>Aedes albopictus</i>) was discovered in Los Angeles (LA) County, California. To determine the probable origin of this invasive species, the genetic structure of the population was compared against 11 populations from the United States and abroad, as well as preserved specimens from a 2001 introduction into California using the mitochondrial cytochrome c oxidase 1 (CO1) gene. A total of 66 haplotypes were detected among samples and were divided into three main groups. <i>Aedes albopictus</i> collected in 2001 and 2011 from LA County were genetically related and similar to those from Asia but distinct from those collected in the eastern and southeastern United States. In view of the high genetic similarities between the 2001 and 2011 LA samples, it is possible that the 2011 population represents in part the descendants of the 2001 introduction. There remains an imperative need for improved surveillance and control strategies for this species.</p></div

    Microbiome Interaction Networks and Community Structure From Laboratory-Reared and Field-Collected Aedes aegypti, Aedes albopictus, and Culex quinquefasciatus Mosquito Vectors

    Get PDF
    <p>Microbial interactions are an underappreciated force in shaping insect microbiome communities. Although pairwise patterns of symbiont interactions have been identified, we have a poor understanding regarding the scale and the nature of co-occurrence and co-exclusion interactions within the microbiome. To characterize these patterns in mosquitoes, we sequenced the bacterial microbiome of Aedes aegypti, Ae. albopictus, and Culex quinquefasciatus caught in the field or reared in the laboratory and used these data to generate interaction networks. For collections, we used traps that attracted host-seeking or ovipositing female mosquitoes to determine how physiological state affects the microbiome under field conditions. Interestingly, we saw few differences in species richness or microbiome community structure in mosquitoes caught in either trap. Co-occurrence and co-exclusion analysis identified 116 pairwise interactions substantially increasing the list of bacterial interactions observed in mosquitoes. Networks generated from the microbiome of Ae. aegypti often included highly interconnected hub bacteria. There were several instances where co-occurring bacteria co-excluded a third taxa, suggesting the existence of tripartite relationships. Several associations were observed in multiple species or in field and laboratory-reared mosquitoes indicating these associations are robust and not influenced by environmental or host factors. To demonstrate that microbial interactions can influence colonization of the host, we administered symbionts to Ae. aegypti larvae that either possessed or lacked their resident microbiota. We found that the presence of resident microbiota can inhibit colonization of particular bacterial taxa. Our results highlight that microbial interactions in mosquitoes are complex and influence microbiome composition.</p
    corecore