2,125 research outputs found

    Online privacy: towards informational self-determination on the internet : report from Dagstuhl Perspectives Workshop 11061

    Get PDF
    The Dagstuhl Perspectives Workshop "Online Privacy: Towards Informational Self-Determination on the Internet" (11061) has been held in February 6-11, 2011 at Schloss Dagstuhl. 30 participants from academia, public sector, and industry have identified the current status-of-the-art of and challenges for online privacy as well as derived recommendations for improving online privacy. Whereas the Dagstuhl Manifesto of this workshop concludes the results of the working groups and panel discussions, this article presents the talks of this workshop by their abstracts

    Four Years of Unmediated Demand-Driven Acquisition and 5,000 E-Books Later: We Gave ‘Em What They Wanted

    Get PDF
    As one of ebrary’s largest academic library DDA customers, the program at the University of Iowa Libraries has been highly successful, though not without challenges. This presentation will present detailed findings from analyzing Iowa’s demand-driven acquisition e-book usage data from over 5,000 titles purchased over 4 years, including examining subject areas, prices, publishers, and other relevant metrics. This presentation will serve as update to a popular session at Charleston in 2010 (Give ‘Em What They Want: Patron-Driven Collection Development), where the University of Iowa Libraries presented data from a 1-year pilot program. Now, with 4 years of experience under our belts, a lot more data, and over a half-million dollars spent from our coffers, Iowa will share what we have learned, gained, and changed as a result of our experiences

    A combined spectroscopic and photometric stellar activity study of Epsilon Eridani

    Get PDF
    We present simultaneous ground-based radial velocity (RV) measurements and space-based photometric measurements of the young and active K dwarf Epsilon Eridani. These measurements provide a data set for exploring methods of identifying and ultimately distinguishing stellar photospheric velocities from Keplerian motion. We compare three methods we have used in exploring this data set: Dalmatian, an MCMC spot modeling code that fits photometric and RV measurements simultaneously; the FF' method, which uses photometric measurements to predict the stellar activity signal in simultaneous RV measurements; and Hα\alpha analysis. We show that our Hα\alpha measurements are strongly correlated with photometry from the Microvariability and Oscillations of STars (MOST) instrument, which led to a promising new method based solely on the spectroscopic observations. This new method, which we refer to as the HH' method, uses Hα\alpha measurements as input into the FF' model. While the Dalmatian spot modeling analysis and the FF' method with MOST space-based photometry are currently more robust, the HH' method only makes use of one of the thousands of stellar lines in the visible spectrum. By leveraging additional spectral activity indicators, we believe the HH' method may prove quite useful in disentangling stellar signals

    Light attenuation characteristics of glacially-fed lakes

    Get PDF
    Transparency is a fundamental characteristic of aquatic ecosystems and is highly responsive to changes in climate and land use. The transparency of glacially-fed lakes may be a particularly sensitive sentinel characteristic of these changes. However, little is known about the relative contributions of glacial flour versus other factors affecting light attenuation in these lakes. We sampled 18 glacially-fed lakes in Chile, New Zealand, and the U.S. and Canadian Rocky Mountains to characterize how dissolved absorption, algal biomass (approximated by chlorophyll a), water, and glacial flour contributed to attenuation of ultraviolet radiation (UVR) and photosynthetically active radiation (PAR, 400–700 nm). Variation in attenuation across lakes was related to turbidity, which we used as a proxy for the concentration of glacial flour. Turbidity-specific diffuse attenuation coefficients increased with decreasing wavelength and distance from glaciers. Regional differences in turbidity-specific diffuse attenuation coefficients were observed in short UVR wavelengths (305 and 320 nm) but not at longer UVR wavelengths (380 nm) or PAR. Dissolved absorption coefficients, which are closely correlated with diffuse attenuation coefficients in most non-glacially-fed lakes, represented only about one quarter of diffuse attenuation coefficients in study lakes here, whereas glacial flour contributed about two thirds across UVR and PAR. Understanding the optical characteristics of substances that regulate light attenuation in glacially-fed lakes will help elucidate the signals that these systems provide of broader environmental changes and forecast the effects of climate change on these aquatic ecosystems

    Sub-20 nm Core-Shell-Shell Nanoparticles for Bright Upconversion and Enhanced Förster Resonant Energy Transfer.

    Get PDF
    Upconverting nanoparticles provide valuable benefits as optical probes for bioimaging and Förster resonant energy transfer (FRET) due to their high signal-to-noise ratio, photostability, and biocompatibility; yet, making nanoparticles small yields a significant decay in brightness due to increased surface quenching. Approaches to improve the brightness of UCNPs exist but often require increased nanoparticle size. Here we present a unique core-shell-shell nanoparticle architecture for small (sub-20 nm), bright upconversion with several key features: (1) maximal sensitizer concentration in the core for high near-infrared absorption, (2) efficient energy transfer between core and interior shell for strong emission, and (3) emitter localization near the nanoparticle surface for efficient FRET. This architecture consists of β-NaYbF4 (core) @NaY0.8-xErxGd0.2F4 (interior shell) @NaY0.8Gd0.2F4 (exterior shell), where sensitizer and emitter ions are partitioned into core and interior shell, respectively. Emitter concentration is varied (x = 1, 2, 5, 10, 20, 50, and 80%) to investigate influence on single particle brightness, upconversion quantum yield, decay lifetimes, and FRET coupling. We compare these seven samples with the field-standard core-shell architecture of β-NaY0.58Gd0.2Yb0.2Er0.02F4 (core) @NaY0.8Gd0.2F4 (shell), with sensitizer and emitter ions codoped in the core. At a single particle level, the core-shell-shell design was up to 2-fold brighter than the standard core-shell design. Further, by coupling a fluorescent dye to the surface of the two different architectures, we demonstrated up to 8-fold improved emission enhancement with the core-shell-shell compared to the core-shell design. We show how, given proper consideration for emitter concentration, we can design a unique nanoparticle architecture to yield comparable or improved brightness and FRET coupling within a small volume

    Dynamics of the middle atmosphere as simulated by the Whole Atmosphere Community Climate Model, version 3 (WACCM3)

    Get PDF
    The Whole Atmosphere Community Climate Model, version 3 (WACCM3) is a state-of-the-art climate model extending from the Earth's surface to the lower thermosphere. In this paper we present a detailed climatology of the dynamics of the middle atmosphere as represented by WACCM3 at various horizontal resolutions and compare them to observations. In addition to the mean climatological fields, we examine in detail the middle atmospheric momentum budget as well as several lower and upper atmosphere coupling phenomena including stratospheric sudden warmings, the 2-day wave, and the migrating diurnal tide. We find that in large part, differences between WACCM3 and observations and the mean state of the model at various horizontal resolutions are related to gravity wave drag, which is parameterized in WACCM3 (and similar models). All three lower and upper atmosphere coupling processes examined show high sensitivity to the model's resolution

    The Search for an Atmospheric Signature of the Transiting Exoplanet HD 149026b

    Full text link
    HD 149026b is a short-period, Saturn-mass planet that transits a metal-rich star. The planet's radius, determined by photometry, is remarkably small compared to other known transiting planets, with a heavy-element core that apparently comprises ~70% of the total planet mass. Time-series spectra were obtained at Keck before and during transit in order to model the Rossiter-McLaughlin effect. Here we make use of these observations to carry out a differential comparison of spectra obtained in and out of transit to search for signatures of neutral atomic lithium and potassium from the planet atmosphere. No signal was detected at the 2% level; we therefore place upper limits on the column density of these atoms.Comment: 8 pages, 10 figures, 2 table

    Understanding Commuter Patterns and Behavior: An Analysis to Recommend Policies Aimed at Reducing Vehicle Use

    Get PDF
    This study focused on the use of single occupancy vehicles by employee and student commuters at the University at Albany. The team conducted a review of the existing options for alternative transportation, developed GIS maps of commuting patterns, investigated the on-time performance of mass transit and created a survey to examine perceptions and barriers to using alternative transportation. The report includes a handbook for conducting a similar analysis at other institutions

    11β,13-Dihydro­lactucin-8-O-acetate hemihydrate

    Get PDF
    The title structure (systematic name: 9-hydroxy­methyl-3,6-di­methyl-3-methyl­ene-2,7-dioxo-3,3a,4,5,9a,9b-hexa­hydro­azu­leno[4,5-b]furan-4-yl acetate hemihydrate), C17H20O6·0.5H2O, from Lactuca floridana, has two independent sesquiterpene lactone mol­ecules in the asymmetric unit. Both have their seven-membered rings in the chair conformation. In the crystal, the OH groups and the water mol­ecule form classical O—H⋯O hydrogen bonds with O⋯O distances in the range 2.6750 (17)–2.8160 (18) Å
    corecore