43 research outputs found

    Conceptualising sustainability in UK urban Regeneration: a discursive Formation

    Get PDF
    Despite the wide usage and popular appeal of the concept of sustainability in UK policy, it does not appear to have challenged the status quo in urban regeneration because policy is not leading in its conceptualisation and therefore implementation. This paper investigates how sustainability has been conceptualised in a case-based research study of the regeneration of Eastside in Birmingham, UK, through policy and other documents, and finds that conceptualisations of sustainability are fundamentally limited. The conceptualisation of sustainability operating within urban regeneration schemes should powerfully shape how they make manifest (or do not) the principles of sustainable development. Documents guide, but people implement regeneration—and the disparate conceptualisations of stakeholders demonstrate even less coherence than policy. The actions towards achieving sustainability have become a policy ‘fix’ in Eastside: a necessary feature of urban policy discourse that is limited to solutions within market-based constraints

    The next generation of training for arabidopsis researchers: Bioinformatics and Quantitative Biology

    Get PDF
    It has been more than 50 years since Arabidopsis (Arabidopsis thaliana) was first introduced as a model organism to understand basic processes in plant biology. A well-organized scientific community has used this small reference plant species to make numerous fundamental plant biology discoveries (Provart et al., 2016). Due to an extremely well-annotated genome and advances in high-throughput sequencing, our understanding of this organism and other plant species has become even more intricate and complex. Computational resources, including CyVerse,3 Araport,4 The Arabidopsis Information Resource (TAIR),5 and BAR,6 have further facilitated novel findings with just the click of a mouse. As we move toward understanding biological systems, Arabidopsis researchers will need to use more quantitative and computational approaches to extract novel biological findings from these data. Here, we discuss guidelines, skill sets, and core competencies that should be considered when developing curricula or training undergraduate or graduate students, postdoctoral researchers, and faculty. A selected case study provides more specificity as to the concrete issues plant biologists face and how best to address such challenges

    A physical map of Brassica oleracea shows complexity of chromosomal changes following recursive paleopolyploidizations

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Evolution of the Brassica species has been recursively affected by polyploidy events, and comparison to their relative, <it>Arabidopsis thaliana</it>, provides means to explore their genomic complexity.</p> <p>Results</p> <p>A genome-wide physical map of a rapid-cycling strain of <it>B. oleracea </it>was constructed by integrating high-information-content fingerprinting (HICF) of Bacterial Artificial Chromosome (BAC) clones with hybridization to sequence-tagged probes. Using 2907 contigs of two or more BACs, we performed several lines of comparative genomic analysis. Interspecific DNA synteny is much better preserved in euchromatin than heterochromatin, showing the qualitative difference in evolution of these respective genomic domains. About 67% of contigs can be aligned to the Arabidopsis genome, with 96.5% corresponding to euchromatic regions, and 3.5% (shown to contain repetitive sequences) to pericentromeric regions. Overgo probe hybridization data showed that contigs aligned to Arabidopsis euchromatin contain ~80% of low-copy-number genes, while genes with high copy number are much more frequently associated with pericentromeric regions. We identified 39 interchromosomal breakpoints during the diversification of <it>B. oleracea </it>and <it>Arabidopsis thaliana</it>, a relatively high level of genomic change since their divergence. Comparison of the <it>B. oleracea </it>physical map with Arabidopsis and other available eudicot genomes showed appreciable 'shadowing' produced by more ancient polyploidies, resulting in a web of relatedness among contigs which increased genomic complexity.</p> <p>Conclusions</p> <p>A high-resolution genetically-anchored physical map sheds light on Brassica genome organization and advances positional cloning of specific genes, and may help to validate genome sequence assembly and alignment to chromosomes.</p> <p>All the physical mapping data is freely shared at a WebFPC site (<url>http://lulu.pgml.uga.edu/fpc/WebAGCoL/brassica/WebFPC/</url>; Temporarily password-protected: account: pgml; password: 123qwe123.</p

    Selection for Higher Gene Copy Number after Different Types of Plant Gene Duplications

    Get PDF
    The evolutionary origins of the multitude of duplicate genes in the plant genomes are still incompletely understood. To gain an appreciation of the potential selective forces acting on these duplicates, we phylogenetically inferred the set of metabolic gene families from 10 flowering plant (angiosperm) genomes. We then compared the metabolic fluxes for these families, predicted using the Arabidopsis thaliana and Sorghum bicolor metabolic networks, with the families' duplication propensities. For duplications produced by both small scale (small-scale duplications) and genome duplication (whole-genome duplications), there is a significant association between the flux and the tendency to duplicate. Following this global analysis, we made a more fine-scale study of the selective constraints observed on plant sodium and phosphate transporters. We find that the different duplication mechanisms give rise to differing selective constraints. However, the exact nature of this pattern varies between the gene families, and we argue that the duplication mechanism alone does not define a duplicated gene's subsequent evolutionary trajectory. Collectively, our results argue for the interplay of history, function, and selection in shaping the duplicate gene evolution in plants

    Arabidopsis bioinformatics resources: the current state, challenges, and priorities for the future

    Get PDF
    Effective research, education, and outreach efforts by the Arabidopsis thaliana community, as well as other scientific communities that depend on Arabidopsis resources, depend vitally on easily available and publicly-shared resources. These resources include reference genome sequence data and an ever-increasing number of diverse data sets and data types. TAIR (The Arabidopsis Information Resource) and Araport (originally named the Arabidopsis Information Portal) are community informatics resources that provide tools, data, and applications to the more than 30,000 researchers worldwide that use in their work either Arabidopsis as a primary system of study or data derived from Arabidopsis. Four years after Araport’s establishment, the IAIC held another workshop to evaluate the current status of Arabidopsis Informatics and chart a course for future research and development. The workshop focused on several challenges, including the need for reliable and current annotation, community-defined common standards for data and metadata, and accessible and user-friendly repositories / tools / methods for data integration and visualization. Solutions envisioned included (1) a centralized annotation authority to coalesce annotation from new groups, establish a consistent naming scheme, distribute this format regularly and frequently, and encourage and enforce its adoption. (2) Standards for data and metadata formats, which are essential, but challenging when comparing across diverse genotypes and in areas with less-established standards (e.g. phenomics, metabolomics). Community-established guidelines need to be developed. (3) A searchable, central repository for analysis and visualization tools. Improved versioning and user access would make tools more accessible. Workshop participants proposed a “one-stop shop” website, an Arabidopsis “Super-Portal” to link tools, data resources, programmatic standards, and best practice descriptions for each data type. This must have community buy-in and participation in its establishment and development to encourage adoption

    An atlas of over 90.000 conserved noncoding sequences provides insight into crucifer regulatory regions

    Get PDF
    Despite the central importance of noncoding DNA to gene regulation and evolution, understanding of the extent of selection on plant noncoding DNA remains limited compared to that of other organisms. Here we report sequencing of genomes from three Brassicaceae species (Leavenworthia alabamica, Sisymbrium irio and Aethionema arabicum) and their joint analysis with six previously sequenced crucifer genomes. Conservation across orthologous bases suggests that at least 17% of the Arabidopsis thaliana genome is under selection, with nearly one-quarter of the sequence under selection lying outside of coding regions. Much of this sequence can be localized to approximately 90,000 conserved noncoding sequences (CNSs) that show evidence of transcriptional and post-transcriptional regulation. Population genomics analyses of two crucifer species, A. thaliana and Capsella grandiflora, confirm that most of the identified CNSs are evolving under medium to strong purifying selection. Overall, these CNSs highlight both similarities and several key differences between the regulatory DNA of plants and other species

    Defining Information Literacy for the UK

    Get PDF
    Information literacy (IL) was adopted as the theme for the Presidential year of Professor Sheila Corrall, the first President of CILIP, in April 2002. At the end of her year as President, she called a meeting of experts and practitioners at CILIP, which concluded that the term was not understood or used consistently across all sectors in the UK. A working party was formed, charged with producing a definition, as well as supporting material such as case studies demonstrating how IL can make a difference to individuals. A definition and lists of core skills were developed
    corecore