12 research outputs found

    LOAD CARRIAGE ALTERS TIBIOFEMORAL KINEMATICS DURING SLOW JOGGING IN ADULT MEN AND WOMEN

    Get PDF
    The purpose of this investigation was to determine the effects of load carriage on tibiofemoral kinematics during running. Nineteen healthy, recreationally active adults completed dynamic biplane radiography trials of the dominant limb knee with no load (BW), and an additional 55% of body weight (+55%BW) while running 10% above gait transition velocity. A volumetric model-based tracking technique was utilized to derive medial translation excursion, proximal (inferior-superior) translation excursion, anterior translation excursion, flexion, internal rotation and abduction. At heel strike, running with +55%BW exhibited a more flexed knee compared to BW. However, BW exhibited more proximal translation excursion compared to +55%BW. By contrast, +55%BW had greater anterior translation excursion compared to BW. There were no significant differences between BW and +55%BW for medial translation excursion, internal rotation angle/excursion or abduction angle/excursion The greater knee flexion angle at heel strike for +55%BW may serve as a mechanism to better attenuate the greater impact force via eccentric muscle action. However, reduced proximal translation excursion during +55%BW could suggest greater loading of the soft tissues

    Injury occurrence and mood states during a desert ultramarathon

    Get PDF
    Objective: To describe injuries and illnesses presented and profile mood states and sleep patterns during a desert environment ultramarathon.Design: Prospective study gathering data on mood states and injury patterns.Setting: Gobi Desert, Mongolia.Participants: Eleven male competitors (mean mass, 83.7 ± 7.1 kg; body mass index, 24 ± 1.79 kg/m2; age, 33 ± 11 years).Interventions: Injuries were clinically assessed and recorded each day.Main Outcome Measures: Mood state was assessed using the Brunel Mood Scale.Results: All subjects presented with abrasion injuries, dehydration, and heat stress. Vigor decreased over the first 6 days while fatigue increased (P < 0.05). Fatigue and vigor recovered on the final morning. The observed recovery was set against increasing levels of depression, tension, and confusion, which peaked at days 5/6 but returned to day 1 levels on the 7th day morning (P < 0.05). Mean sleep duration (6:17 ± 00:48 hours:minutes; lowest on day 6, 4:43 ± 01:54 hours:minutes) did not vary significantly across the 7 days but did correlate with mood alterations (P < 0.05). Increased anger and fatigue correlated strongly with sleep disruption (r = 0.736 and 0.768, respectively). Vigor and depression displayed a moderately strong correlation to sleep (r = 0.564 and −0.530).Conclusions: Injury patterns were similar to those reported in other adventure/ultradistance events. Consistent with previous work, data show increased fatigue and reduced vigor in response to an arduous physical challenge

    Reliability and Validity of a Flume-Based Maximal Oxygen Uptake Swimming Test

    Get PDF
    A mode-specific swimming protocol to assess maximal aerobic uptake (VO2maxsw) is vital to accurately evaluate swimming performance. A need exists for reliable and valid swimming protocols that assess VO2maxsw in a flume environment. The purpose was to assess: (a) reliability and (b) “performance” validity of a VO2maxsw flume protocol using the 457-m freestyle pool performance swim (PS) test as the criterion. Nineteen males (n = 9) and females (n = 10) (age, 28.5 ± 8.3 years.; height, 174.7 ± 8.2 cm; mass, 72.9 ± 12.5 kg; %body fat, 21.4 ± 5.9) performed two flume VO2maxsw tests (VO2maxswA and VO2maxswB) and one PS test [457 m (469.4 ± 94.7 s)]. For test–retest reliability (Trials A vs. B), moderately strong relationships were established for VO2maxsw (mL·kg−1·min−1)(r= 0.628, p = 0.002), O2pulse (mL O2·beat−1)(r = 0.502, p = 0.014), VEmax (L·min−1) (r = 0.671, p = 0.001), final test time (sec) (0.608, p = 0.004), and immediate post-test blood lactate (IPE (BLa)) (0.716, p = 0.001). For performance validity, moderately strong relationships (p \u3c 0.05) were found between VO2maxswA (r =−0.648, p = 0.005), O2pulse (r= −0.623, p = 0.008), VEmax (r = −0.509 p = 0.037), and 457-m swim times. The swimming flume protocol examined is a reliable and valid assessment of VO2maxsw., and offers an alternative for military, open water, or those seeking complementary forms of training to improve swimming performance

    Load carriage changes tibiofemoral arthrokinematics during ambulatory tasks in recruit-aged women

    Get PDF
    The introduction of women into U.S. military ground close combat roles requires research into sex-specific effects of military training and operational activities. Knee osteoarthritis is prevalent among military service members; its progression has been linked to occupational tasks such as load carriage. Analyzing tibiofemoral arthrokinematics during load carriage is important to understand potentially injurious motion and osteoarthritis progression. The study purpose was to identify effects of load carriage on knee arthrokinematics during walking and running in recruit-aged women. Twelve healthy recruit-aged women walked and ran while unloaded (bodyweight [BW]) and carrying additional + 25%BW and + 45%BW. Using dynamic biplane radiography and subject-specific bone models, tibiofemoral arthrokinematics, subchondral joint space and center of closest contact location between subchondral bone surfaces were analyzed over 0–30% stance (separate one-way repeated measures analysis of variance, load by locomotion). While walking, medial compartment contact location was 5% (~ 1.6 mm) more medial for BW than + 45%BW at foot strike (p = 0.03). While running, medial compartment contact location was 4% (~ 1.3 mm) more lateral during BW than + 25%BW at 30% stance (p = 0.04). Internal rotation was greater at + 45%BW compared to + 25%BW (p < 0.01) at 30% stance. Carried load affects tibiofemoral arthrokinematics in recruit-aged women. Prolonged load carriage could increase the risk of degenerative joint injury in physically active women

    Injury occurrence and mood states during a desert ultramarathon

    No full text
    OBJECTIVE: To describe injuries and illnesses presented and profile mood states and sleep patterns during a desert environment ultramarathon.DESIGN: Prospective study gathering data on mood states and injury patterns.SETTING: : Gobi Desert, Mongolia.PARTICIPANTS: Eleven male competitors (mean mass, 83.7 ± 7.1 kg; body mass index, 24 ± 1.79 kg/m; age, 33 ± 11 years).INTERVENTIONS: Injuries were clinically assessed and recorded each day.MAIN OUTCOME MEASURES: Mood state was assessed using the Brunel Mood Scale.RESULTS: All subjects presented with abrasion injuries, dehydration, and heat stress. Vigor decreased over the first 6 days while fatigue increased (P &lt; 0.05). Fatigue and vigor recovered on the final morning. The observed recovery was set against increasing levels of depression, tension, and confusion, which peaked at days 5/6 but returned to day 1 levels on the 7th day morning (P &lt; 0.05). Mean sleep duration (6:17 ± 00:48 hours:minutes; lowest on day 6, 4:43 ± 01:54 hours:minutes) did not vary significantly across the 7 days but did correlate with mood alterations (P &lt; 0.05). Increased anger and fatigue correlated strongly with sleep disruption (r = 0.736 and 0.768, respectively). Vigor and depression displayed a moderately strong correlation to sleep (r = 0.564 and -0.530).CONCLUSIONS: Injury patterns were similar to those reported in other adventure/ultradistance events. Consistent with previous work, data show increased fatigue and reduced vigor in response to an arduous physical challenge.</p

    Physical training considerations for optimizing performance in essential military tasks

    Get PDF
    Physically demanding essential military tasks include load carriage, manual material handling and casualty evacuation. This narrative review characterizes the main physical attributes related to performance of these occupational tasks and reviews physical training intervention studies in military settings to improve performance in these military tasks. Load carriage performance requires both aerobic and neuromuscular fitness with greater emphasis on maximal strength and absolute maximal oxygen uptake, especially when carrying heavier loads. In manual material handling, maximal strength and power are strongly associated with discrete lifting, while muscular strength, muscular endurance and aerobic fitness are also associated with repetitive lifting performance. Maximal strength including grip strength, muscular endurance, absolute maximal oxygen uptake and anaerobic capacity are associated with casualty evacuation performance. The results of the present review particularly emphasize the role of muscular fitness in successful performance of the reviewed military occupational tasks. Training intervention studies indicate that load carriage performance can be effectively improved by combining strength, aerobic and specific load carriage training. Improvement in maximal lifting capacity can be achieved by strength training or combined strength and aerobic training, while strength and aerobic training alone, or their combination are effective in improving repetitive lifting, and carry tasks. Only a few studies are available for casualty evacuation and the results are inconclusive but may indicate benefits of strength or combined training. Moreover, emphasis on lower volume but higher intensity in combined training may be a feasible and effective mode to improve military occupational performance in recruits and active-duty soldiers.peerReviewe

    Prevention of exertional lower body musculoskeletal injury in tactical populations: protocol for a systematic review and planned meta-analysis of prospective studies from 1955 to 2018

    Get PDF
    Abstract Background Exertional lower body musculoskeletal injuries (ELBI) cost billions of dollars and compromise the readiness and job performance of military service and public safety workers (i.e., tactical populations). The prevalence and burden of such injuries underscores the importance of prevention efforts during activities necessary to sustain core occupational competencies. Attempts to synthesize prevention techniques specific to tactical populations have provided limited insight on the comparative efficacy of interventions that do not modify physical training practices. There is also a need to assess the influence of sex, exposure, injury classification scheme, and study design. Thus, the primary purpose of the systematic review and planned meta-analysis detailed in this protocol is to evaluate the comparative efficacy of ELBI prevention strategies in tactical populations. Methods A systematic search strategy will be implemented in MEDLINE, EMBASE, Cochrane, and CINAHL. A multi-tiered process will be used to capture randomized controlled trials and prospective cohort studies that directly assess the prevention of ELBI in tactical population(s). Extracted data will be used to compare prevention strategies and assess the influence of heterogeneity related to occupation, sex, exposure, injury characteristics, and study quality. In addition, individual risk of bias, meta-bias, and the quality of the body of evidence will be rigorously tested. Discussion This systematic review and planned meta-analysis will comprehensively evaluate ELBI mitigation strategies in tactical populations, elucidate factors that influence responses to treatment, and assess the overall quality of the body of research. Results of this work will guide the prioritization of ELBI prevention strategies and direct future research efforts, with direct relevance to tactical, health and rehabilitation science, and human performance optimization stakeholders. Systematic review registration The systematic review protocol was registered with the International Prospective Register of Systematic Reviews (PROSPERO) on 3 Jan 2018 (registration number CRD42018081799)

    Prediction of exertional lower extremity musculoskeletal injury in tactical populations: protocol for a systematic review and planned meta-analysis of prospective studies from 1955 to 2018

    No full text
    Abstract Background Musculoskeletal injuries (MSI) represent more than half of all injuries in tactical populations (i.e., military service and public safety workers including police, firefighters, emergency medical services (EMS)). Most lower extremity MSIs result from physical exertion during training, occupational tasks, and recreation. Such exertional lower extremity injuries (ELEI) produce a significant human and financial cost. Accordingly, significant efforts have been made to identify sensitive, specific, and reliable predictors of ELEI. There is a need to synthesize and evaluate the predictive value of risk factors for ELEI while addressing the influence of occupation, sex, exposure, injury characteristics, and study quality. Therefore, the purpose of this systematic review and planned meta-analysis is to evaluate risk factors for ELEI in tactical populations. Methods After the development of a search strategy, comprehensive searches will be conducted in MEDLINE, EMBASE, Cochrane, and CINAHL databases. Articles will be screened with a multi-user process and delimited to prospective comparative cohort studies that directly measure injury occurrence in the target population(s). Extracted data will be synthesized and assessed for reporting bias, meta-bias, and overall quality, with subgroup analyses to determine the influence of participant, injury, and exposure characteristics in addition to study quality. Discussion This systematic review and planned meta-analysis will comprehensively evaluate ELEI risk factors. Information gained will inform injury prevention protocols, facilitate the use of improved measurements, and identify requirements for future research. Trial Registration The systematic review protocol was registered with the International Prospective Register of Systematic Reviews (PROSPERO) on 3 Jan 2018 (registration number CRD42018056977)

    Reliability and Validity of a Flume-Based Maximal Oxygen Uptake Swimming Test

    Get PDF
    A mode-specific swimming protocol to assess maximal aerobic uptake (VO2maxsw) is vital to accurately evaluate swimming performance. A need exists for reliable and valid swimming protocols that assess VO2maxsw in a flume environment. The purpose was to assess: (a) reliability and (b) “performance” validity of a VO2maxsw flume protocol using the 457-m freestyle pool performance swim (PS) test as the criterion. Nineteen males (n = 9) and females (n = 10) (age, 28.5 ± 8.3 years.; height, 174.7 ± 8.2 cm; mass, 72.9 ± 12.5 kg; %body fat, 21.4 ± 5.9) performed two flume VO2maxsw tests (VO2maxswA and VO2maxswB) and one PS test [457 m (469.4 ± 94.7 s)]. For test–retest reliability (Trials A vs. B), moderately strong relationships were established for VO2maxsw (mL·kg−1·min−1)(r= 0.628, p = 0.002), O2pulse (mL O2·beat−1)(r = 0.502, p = 0.014), VEmax (L·min−1) (r = 0.671, p = 0.001), final test time (sec) (0.608, p = 0.004), and immediate post-test blood lactate (IPE (BLa)) (0.716, p = 0.001). For performance validity, moderately strong relationships (p 2maxswA (r =−0.648, p = 0.005), O2pulse (r= −0.623, p = 0.008), VEmax (r = −0.509 p = 0.037), and 457-m swim times. The swimming flume protocol examined is a reliable and valid assessment of VO2maxsw., and offers an alternative for military, open water, or those seeking complementary forms of training to improve swimming performance
    corecore