31 research outputs found

    A high frequency GaAlAs travelling wave electro-optic modulator at 0.82 micrometers

    Get PDF
    Experimental GaAlAs modulators operating at 0.82 micrometers using a Mach-Zehnder interferometer configuration were designed and fabricated. Coplanar 50 ohm travelling wave microwave electrodes were used to obtain a bandwidth length product of 11.95 GHz-cm. The design, fabrication and dc performance of the GaAlAs travelling wave modulator is presented

    Analysis of Microstrip Lines with Alternative Implementation of Conductors and Superconductors

    Get PDF
    An analysis of microstrip line structures in which either the strip or the ground plane or both are made of a high Tc superconductor is presented. The effect of implementation of a superconductor to the strip and the ground plane is explained with the calculation of a conductor loss of the structure by the Phenomenological Loss Equivalence Method (PEM). The theoretical values are compared with the experimental results from a ring resonator which is made of a gold ground plane and a high Tc superconductor, YBa2Cu3O(7-x), strip

    Performance of a Y-Ba-Cu-O superconducting filter/GaAs low noise amplifier hybrid circuit

    Get PDF
    A superconducting 7.3 GHz two-pole microstrip bandpass filter and a GaAs low noise amplifier (LNA) were combined into an active circuit and characterized at liquid nitrogen temperatures. This superconducting/semiconducting circuit's performance was compared to a gold filter/GaAs LNA hybrid circuit. The superconducting filter/GaAs LNA hybrid circuit showed higher gain and lower noise figure than its gold counterpart

    High temperature superconducting thin film microwave circuits: Fabrication, characterization, and applications

    Get PDF
    Epitaxial YBa2Cu3O7 films were grown on several microwave substrates. Surface resistance and penetration depth measurements were performed to determine the quality of these films. Here the properties of these films on key microwave substrates are described. The fabrication and characterization of a microwave ring resonator circuit to determine transmission line losses are presented. Lower losses than those observed in gold resonator circuits were observed at temperatures lower than critical transition temperature. Based on these results, potential applications of microwave superconducting circuits such as filters, resonators, oscillators, phase shifters, and antenna elements in space communication systems are identified

    Growth and patterning of laser ablated superconducting YBa2Cu3O7 films on LaAlO3 substrates

    Get PDF
    A high quality superconducting film on a substrate with a low dielectric constant is desired for passive microwave circuit applications. In addition, it is essential that the patterning process does not effect the superconducting properties of the thin films to achieve the highest circuit operating temperatures. YBa2Cu3O7 superconducting films were grown on lanthanum aluminate substrates using laser ablation with resulting maximum transition temperature (T sub c) of 90 K. The films were grown on a LaAlO3 which was at 775 C and in 170 mtorr of oxygen and slowly cooled to room temperature in 1 atm of oxygen. These films were then processed using photolithography and a negative photoresist with an etch solution of bromine and ethanol. Results are presented on the effect of the processing on T(sub c) of the film and the microwave properties of the patterned films

    An experimental study of high Tc superconducting microstrip transmission lines at 35 GHz and the effect of film morphology

    Get PDF
    Microstrip transmission lines in the form of ring resonators were fabricated from a number of in-situ grown laser ablated films and post-annealed co-sputtered YBa2Cu3O(7-x) films. The properties of these resonators were measured at 35 GHz and the observed performance is examined in light of the critical temperature (Tc) and film thickness and also the film morphology which is different for the two deposition techniques. It is found that Tc is a major indicator of the film performance for each growth type with film thickness becoming important as it decreases towards 100 A. It is also found that the films with a mixed grain orientation (both a axis and c axis oriented grains) have poorer microwave properties as compared with the primarily c axis oriented material. This is probably due to the significant number of grain boundaries between the different crystallites, which may act as superconducting weak links and contribute to the surface resistance

    HTS thin films: Passive microwave components and systems integration issues

    Get PDF
    The excellent microwave properties of the High-Temperature-Superconductors (HTS) have been amply demonstrated in the laboratory by techniques such as resonant cavity, power transmission and microstrip resonator measurements. The low loss and high Q passive structures made possible with HTS, present attractive options for applications in commercial, military and spacebased systems. However, to readily insert HTS into these systems improvement is needed in such areas as repeatability in the deposition and processing of the HTS films, metal-contact formation, wire bonding, and overall film endurance to fabrication and assembly procedures. In this paper we present data compiled in our lab which illustrate many of the problems associated with these issues. Much of this data were obtained in the production of a space qualified hybrid receiver-downconverter module for the Naval Research Laboratory's High Temperature Superconductivity Space Experiment 2 (HTSSE-2). Examples of variations observed in starting films and finished circuits will be presented. It is shown that under identical processing the properties of the HTS films can degrade to varying extents. Finally, we present data on ohmic contacts and factors affecting their adhesion to HTS films, strength of wire bonds made to such contacts, and aging effects

    Space qualified hybrid superconductor/semiconductor planar oscillator circuit

    Get PDF
    We report on the space qualification of a hybrid superconductor/semiconductor planar local oscillator (LO) at 8.4 GHz. This oscillator was designed, fabricated, and tested as a component for the High Temperature Superconductivity Space Experiment 2 (HTSSE-2). The LO consisted of a GaAs MESFET and microstrip circuitry patterned onto a YBa2Cu3O(7-delta) high temperature superconducting (HTS) thin film on a 1.0 x 1.0 sq cm lanthanum aluminate (LaAlO3) substrate. At 77 K, this oscillator achieved power output levels up to 10 dBm into a 50 Ohm load. When incorporated into a full cryogenic receiver, the LO provided output powers within 0.0-3.0 dBm with less than 50 mW of dc power dissipation. Space qualification data on the sensitivity of the HTS films to the processing steps involved in the fabrication of HTS-based components are presented. Data on ohmic contacts, strength of wire bonds made to such contacts, and aging effects as well as vibration test results are discussed

    Performance and modeling of superconducting ring resonators at millimeter-wave frequencies

    Get PDF
    Microstrip ring resonators operating at 35 GHz were fabricated from laser ablated YBCO thin films deposited on lanthanum aluminate substrates. They were measured over a range of temperatures and their performance compared to identical resonators made of evaporated gold. Below 60 Kelvin the superconducting strip performed better than the gold, reaching an unloaded Q approximately 1.5 times that of gold at 25 K. A shift in the resonant frequency follows the form predicted by the London equations. The Phenomenological Loss Equivalence Method is applied to the ring resonator and the theoretically calculated Q values are compared to the experimental results

    Microwave conductivity of laser ablated YBa2Cu3O(7-delta) superconducting films and its relation to microstrip transmission line performance

    Get PDF
    The discovery of high temperature superconductor oxides has raised the possibility of a new class of millimeter and microwave devices operating at temperatures considerably higher than liquid helium temperatures. Therefore, materials properties such as conductivity, current density, and sheet resistance as a function of temperature and frequency, possible anisotropies, moisture absorption, thermal expansion, and others, have to be well characterized and understood. The millimeter wave response of laser ablated YBa2Cu3O(7-delta)/LaAlO3 thin films was studied as a function of temperature and frequency. In particular, the evaluation of their microwave conductivity was emphasized, since knowledge of this parameter provides a basis for the derivation of other relevant properties of these superconducting oxides, and for using them in the fabrication of actual passive circuits. The microwave conductivity for these films was measured at frequencies from 26.5 to 40.0 GHz, in the temperature range from 20 to 300 K. The values of the conductivity are obtained from the millimeter wave power transmitted through the films, using a two fluid model
    corecore