10 research outputs found

    Influence of GeO2 Content on the Spectral and Radiation-Resistant Properties of Yb/Al/Ge Co-Doped Silica Fiber Core Glasses

    No full text
    In this study, Yb/Al/Ge co-doped silica fiber core glasses with different GeO2 contents (0–6.03 mol%) were prepared using the sol–gel method combined with high-temperature sintering. The absorption, fluorescence, radiation-induced absorption, continuous-wave electron paramagnetic resonance spectra, and fluorescence decay curves were recorded and analyzed systematically before and after X-ray irradiation. The effects of GeO2 content on the valence variations of Yb3+/Yb2+ ions, spectral properties of Yb3+ ions, and radiation resistance of Yb/Al/Ge co-doped silica glasses were systematically studied. The results show that even if the GeO2 content of the sample is relatively low (0.62 mol%), it can inhibit the generation of Yb2+ ions with slight improvement in the spectral properties of Yb3+ ions in the pristine samples and effectively improve its radiation resistance. Direct evidence confirms that the generation of trapped-electron centers (Yb2+/Si-E’/Al-E’) and trapped-hole centers (Al-OHC) was effectively inhibited by Ge co-doping. This study provides a theoretical reference for the development of high-performance, radiation-r esistant Yb-doped silica fibers

    Temperature Dependence of Absorption and Energy Transfer Efficiency of Er<sup>3+</sup>/Yb<sup>3+</sup>/P<sup>5+</sup> Co-Doped Silica Fiber Core Glasses

    No full text
    A high phosphorus Er3+/Yb3+ co-doped silica (EYPS) fiber core glass was prepared using the sol-gel method combined with high-temperature sintering. The absorption spectra, emission spectra, and fluorescence decay curves were measured and compared in temperatures ranging from 300 to 480 K. Compared to 915 and 97x nm, the absorption cross-section at ~940 nm (~0.173 pm2) demonstrates a weaker temperature dependence. Hence, the 940 nm pump mechanism is favorable for achieving a high-power laser output at 1.5 μm. Additionally, the double-exponential fluorescence decay of Yb3+ ions and the emission intensity ratio of I1018nm/I1534nm were measured to evaluate the energy transfer efficiency from Yb3+ ions to Er3+ ions. Through the external heating and active quantum defect heating methods, the emission intensity ratios of I1018nm/I1534nm increase by 30.6% and 709.1%, respectively, from ~300 to ~480 K. The results indicate that the temperature rises significantly reduce the efficiency of the energy transfer from the Yb3+ to the Er3+ ions

    Suppression mechanism of radiation-induced darkening by Ce doping in Al/Yb/Ce-doped silica glasses: Evidence from optical spectroscopy, EPR and XPS analyses

    No full text
    National Natural Science Foundation of China (NSFC) [61505232, 61405215]Yb3+/Al3+ co-doped silica glasses with different Ce2O3 contents were prepared using the sol-gel method combined with high-temperature sintering. Changes in refractive index, absorption, emission and fluorescence lifetime of these glasses caused by X-ray irradiation were recorded and analyzed systematically. It is found that co-doping with certain amount of Ce could greatly improve the radiation resistance without evident negative effects on the basic optical properties of the Yb3+ ions in the near-infrared region. The nature of the radiation-induced color centres and the mechanism by which Ce prevented the formation of these centres were studied using optical absorption, electron paramagnetic resonance (EPR), and X-ray photoelectron spectroscopy (XPS) methods. Direct evidence confirmed that trapped electron centres (Yb2+/Si-E'/Al-E') and trapped hole centres (Al-OHCs) were effectively inhibited by Ce doping, which was correlated to the coexistence of the redox couple Ce3+/Ce4+ in the glasses. These results are helpful to understand the micro-structural origin and the suppression mechanism by Ce co-doping of the photodarkening effect in Yb3+-doped silica fibers. Published by AIP Publishing
    corecore