1,483 research outputs found

    A serpentine laminating micromixer combining splitting/recombination and advection

    Get PDF
    Mixing enhancement has drawn great attention from designers of micromixers, since the flow in a microchannel is usually characterized by a low Reynolds number ( Re) which makes the mixing quite a difficult task to accomplish. In this paper, a novel integrated efficient micromixer named serpentine laminating micromixer (SLM) has been designed, simulated, fabricated and fully characterized. In the SLM, a high level of efficient mixing can be achieved by combining two general chaotic mixing mechanisms: splitting/recombination and chaotic advection. The splitting and recombination ( in other terms, lamination) mechanism is obtained by the successive arrangement of "F''-shape mixing units in two layers. The advection is induced by the overall three-dimensional serpentine path of the microchannel. The SLM was realized by SU-8 photolithography, nickel electroplating, injection molding and thermal bonding. Mixing performance of the SLM was fully characterized numerically and experimentally. The numerical mixing simulations show that the advection acts favorably to realize the ideal vertical lamination of fluid flow. The mixing experiments based on an average mixing color intensity change of phenolphthalein show a high level of mixing performance was obtained with the SLM. Numerical and experimental results confirm that efficient mixing is successfully achieved from the SLM over the wide range of Re. Due to the simple and mass producible geometry of the efficient micromixer, SLM proposed in this study, the SLM can be easily applied to integrated microfluidic systems, such as micro-total-analysis-systems or lab-on-a-chip systems.X11159165sciescopu

    Microscale resin-bonded permanent magnets for magnetic micro-electro-mechanical systems applications

    Get PDF
    A micromachining technique has been developed for the fabrication of microscale resin-bonded permanent magnets. Magnetic paste has been prepared from Sr-ferrite powder and an epoxy resin, filled into lithographically defined molds, and formed into resin-bonded magnets after room temperature curing. Coercivity of 356 kA/m (4480 Oe), retentivity of 33 mT (330 G), and energy density of 2.7 kJ/m(3) have been achieved in 65-mum-thick disk arrays with lateral dimensions ranging from 50 to 200 mum. Based on the developed magnet, a magnetic MEMS actuator has been designed, fabricated, and characterized. Actuation current up to +/-60 mA operated the actuator up to 70 mum in attractive and repulsive motion. This work can be used for producing thick-film type permanent magnets, which can be scaled from a few tens of micrometers to millimeters on various substrates

    Disposable Integrated Microfluidic Biochip for Blood Typing by Plastic Microinjection Moulding

    Get PDF
    Blood typing is the most important test for both transfusion recipients and blood donors. In this paper, a low cost disposable blood typing integrated microfluidic biochip has been designed, fabricated and characterized. In the biochip, flow splitting microchannels, chaotic micromixers, reaction microchambers and detection microfilters are fully integrated. The loaded sample blood can be divided by 2 or 4 equal volumes through the flow splitting microchannel so that one can perform 2 or 4 blood agglutination tests in parallel. For the purpose of obtaining efficient reaction of agglutinogens on red blood cells (RBCs) and agglutinins in serum, we incorporated a serpentine laminating micromixer into the biochip, which combines two chaotic mixing mechanisms of splitting/recombination and chaotic advection. Relatively large area reaction microchambers were also introduced for the sake of keeping the mixture of the sample blood and serum during the reaction time before filtering. The gradually decreasing multi-step detection microfilters were designed in order to effectively filter the reacted agglutinated RBCs, which show the corresponding blood group. To achieve the cost-effectiveness of the microfluidic biochip for disposability, the biochip was realized by the microinjection moulding of COC (cyclic olefin copolymer) and thermal bonding of two injection moulded COC substrates in mass production with a total fabrication time of less than 20 min. Mould inserts of the biochip for the microinjection moulding were fabricated by SU-8 photolithography and the subsequent nickel electroplating process. Human blood groups of A, B and AB have been successfully determined with the naked eye, with 3 mu l of the whole sample bloods, by means of the fabricated biochip within 3 min.X11100104sciescopu

    Depth-Sensing Indentation as a Micro- and Nanomechanical Approach to Characterisation of Mechanical Properties of Soft, Biological, and Biomimetic Materials

    Get PDF
    Classical methods of material testing become extremely complicated or impossible at micro-/nanoscale. At the same time, depth-sensing indentation (DSI) can be applied without much change at various length scales. However, interpretation of the DSI data needs to be done carefully, as length-scale dependent effects, such as adhesion, should be taken into account. This review paper is focused on different DSI approaches and factors that can lead to erroneous results, if conventional DSI methods are used for micro-/nanomechanical testing, or testing soft materials. We also review our recent advances in the development of a method that intrinsically takes adhesion effects in DSI into account: the Borodich-Galanov (BG) method, and its extended variant (eBG). The BG/eBG methods can be considered a framework made of the experimental part (DSI by means of spherical indenters), and the data processing part (data fitting based on the mathematical model of the experiment), with such distinctive features as intrinsic model-based account of adhesion, the ability to simultaneously estimate elastic and adhesive properties of materials, and non-destructive nature

    Retrieval of NO2 Column Amounts from Ground-Based Hyperspectral Imaging Sensor Measurements

    Get PDF
    Total column amounts of NO2 (TCN) were estimated from ground-based hyperspectral imaging sensor (HIS) measurements in a polluted urban area (Seoul, Korea) by applying the radiance ratio fitting method with five wavelength pairs from 400 to 460 nm. We quantified the uncertainty of the retrieved TCN based on several factors. The estimated TCN uncertainty was up to 0.09 Dobson unit (DU), equivalent to 2.687 ?? 1020 molecules m???2) given a 1?? error for the observation geometries, including the solar zenith angle, viewing zenith angle, and relative azimuth angle. About 0.1 DU (6.8%) was estimated for an aerosol optical depth (AOD) uncertainty of 0.01. In addition, the uncertainty due to the NO2 vertical profile was 14% to 22%. Compared with the co-located Pandora spectrophotometer measurements, the HIS captured the temporal variation of the TCN during the intensive observation period. The correlation between the TCN from the HIS and Pandora also showed good agreement, with a slight positive bias (bias: 0.6 DU, root mean square error: 0.7 DU)

    Multibreathers in Klein-Gordon chains with interactions beyond nearest neighbors

    Get PDF
    We study the existence and stability of multibreathers in Klein-Gordon chains with interactions that are not restricted to nearest neighbors. We provide a general framework where such long range effects can be taken into consideration for arbitrarily varying (as a function of the node distance) linear couplings between arbitrary sets of neighbors in the chain. By examining special case examples such as three-site breathers with next-nearest-neighbors, we find {\it crucial} modifications to the nearest-neighbor picture of one-dimensional oscillators being excited either in- or anti-phase. Configurations with nontrivial phase profiles, arise, as well as spontaneous symmetry breaking (pitchfork) bifurcations, when these states emerge from (or collide with) the ones with standard (0 or π\pi) phase difference profiles. Similar bifurcations, both of the supercritical and of the subcritical type emerge when examining four-site breathers with either next-nearest-neighbor or even interactions with the three-nearest one-dimensional neighbors. The latter setting can be thought of as a prototype for the two-dimensional building block, namely a square of lattice nodes, which is also examined. Our analytical predictions are found to be in very good agreement with numerical results

    Epitaxial Growth of a Single-Crystal Hybridized Boron Nitride and Graphene layer on a Wide-Band Gap Semiconductor

    Full text link
    Vertical and lateral heterogeneous structures of two-dimensional (2D) materials have paved the way for pioneering studies on the physics and applications of 2D materials. A hybridized hexagonal boron nitride (h-BN) and graphene lateral structure, a heterogeneous 2D structure, has been fabricated on single-crystal metals or metal foils by chemical vapor deposition (CVD). However, once fabricated on metals, the h-BN/graphene lateral structures require an additional transfer process for device applications, as reported for CVD graphene grown on metal foils. Here, we demonstrate that a single-crystal h-BN/graphene lateral structure can be epitaxially grown on a wide-gap semiconductor, SiC(0001). First, a single-crystal h-BN layer with the same orientation as bulk SiC was grown on a Si-terminated SiC substrate at 850 oC using borazine molecules. Second, when heated above 1150 oC in vacuum, the h-BN layer was partially removed and, subsequently, replaced with graphene domains. Interestingly, these graphene domains possess the same orientation as the h-BN layer, resulting in a single-crystal h-BN/graphene lateral structure on a whole sample area. For temperatures above 1600 oC, the single-crystal h-BN layer was completely replaced by the single-crystal graphene layer. The crystalline structure, electronic band structure, and atomic structure of the h-BN/graphene lateral structure were studied by using low energy electron diffraction, angle-resolved photoemission spectroscopy, and scanning tunneling microscopy, respectively. The h-BN/graphene lateral structure fabricated on a wide-gap semiconductor substrate can be directly applied to devices without a further transfer process, as reported for epitaxial graphene on a SiC substrate.Comment: 23 pages, 7 figure
    corecore