20 research outputs found

    Heat Transfer Intensification in a Heat Exchanger by Means of Twisted Tapes in Rib and Sawtooth Forms

    No full text
    This experimental study aimed to intensify the aerothermal performance index (API) in a round tube heat exchanger employing twisted tapes in rib and sawtooth forms (TTRSs) as swirl/vortex flow generators. The TTRSs have a constant twist ratio of 3.0, a constant rib pitch ratio (p/e) of 1.0, and six different sawtooth angles (α = 20°, 30°, 40°, 50°, 60°, and 70°). Experiments were carried out in an open flow using air as the working fluid for Reynolds numbers between 6000 and 20,000 in the current study, which was conducted in a heated tube under conditions of uniform wall heat flux. A typical twisted tape (TT) was also tested for comparison. The experimental results suggest that TTRSs yield Nusselt numbers ranging from 1.42 to 2.10 times of those of a plain tube. TTRSs with larger sawtooth angles (α) offer superior heat transfer. The TTRSs with α = 20°, 30°, 40°, 50°, 60°, and 70° respectively, enhance average Nusselt numbers by 158%, 162%, 166%, 172%, 180%, and 187% with average friction factors of 3.51, 3.55, 3.60, 3.67, 3.75 and 3.82 times higher than a plain tube. Additionally, TTRSs with sawtooth angles (α) of 20°, 30°, 40°, 50°, 60°, and 70° offer APIs in the ranges of 0.99 to 1.19, 1.01 to 1.21, 1.03 to 1.26, 1.05 to 1.31, 1.07 to 1.42, and 1.09 to 1.48, respectively, which are higher than those of the typical twisted tape (TT) by around 5%, 7%, 11%, 16%, 25%, and 31%, respectively. This demonstrates that twisted tapes in rib and sawtooth form (TTRSs), with appropriate geometries, give a promising trade-off between enhanced heat transfer and an increased friction loss penalty

    Characterization of heat transfer and artificial neural networks prediction on overall performance index of a channel installed with arc-shaped baffle turbulators

    No full text
    Influences of baffle pitch ratio (p/w) and attached angle of arc-shaped baffles (AB) on the overall performance index (OPI) of a channel installed with AB have been carefully studied. In addition, an artificial neural network (ANN) model for predicting the OPI of the channel was reported. The arc-shaped baffle (AB) showed a significant effect on the augmented heat transfer and friction loss penalty as compared to a smooth channel. As the attached arc shaped angle (θ) increased, both Nusselt number and friction factor intensified. The Nusselt number values at θ = 90° were higher than those at θ = 20°, 40°, 60°, and 80° by up to 5.8%, 3.9%, 2.3% and 2.5%, respectively. The Nusselt number increased when the p/w was raised from 4.0 to 8.0 while the opposite trend was observed when the p/w was raised from 8.0 to 12.0. The maximum OPI of 1.43 was achieved by using the baffles with θ = 90° and pitch ratio of 8.0 at Re = 4000. For the development of ANN models for predicting the OPI, it was found that the best predictive performance was (R2) of 0.99843407 for ANN model of 3-50-50-1 with Tanh-Tanh activation function at epoch of 1200

    CFD investigation of the impacts of variation in geometry of twisted tape on heat transfer and flow characteristics of water in tubes

    Get PDF
    In this research paper, the influence of variations in geometry of tape insert on thermal performance and flow characteristics of water inside tubes is investigated by means of computational fluid dynamics (CFD). The tape considered is alternate-axis triangular cut twisted tape. The perimeter of the cuts on the tape, the pitch of the tape and the width of the tape were varied. Turbulent flow is considered and uniform heat flux is imposed on the walls of the tubes. The RNG turbulence model is selected for the simulations and RANS equations are applied to render the Navier-Stokes equations tractable. The findings of the investigations indicated that the thermal performance of all the tubes fitted with twisted tape is better than that of the tube without twisted tape, and also that the performance is influenced by the geometry of the twisted tape. In particular, the thermal performance diminishes as the tape pitch increases but it is augmented by an increase in the size of the cuts on the tape and an increase in the width of the tape
    corecore