437 research outputs found

    Continuity of generalized parton distributions for the pion virtual Compton scattering

    Full text link
    We discuss a consistent treatment of the light-front gauge-boson and meson wave functions in the analyses of the generalized parton distributions(GPDs) and the scattering amplitudes in deeply virtual Compton scattering(DVCS) for the pion. The continuity of the GPDs at the crossover, where the longitudinal momentum fraction of the probed quark is same with the skewedness parameter, and the finiteness of the DVCS amplitude are ensured if the same light-front radial wave function as that of the meson bound state wave function is used for the gauge boson bound state arising from the pair-creation(or nonvalence) diagram. The frame-independence of our model calculation is also guaranteed by the constraint from the sum rule between the GPDs and the form factors.Comment: 14 pages, 9 figures, we (1) changed the title, (2) added references, (3) discussed the GPD value at the crossover in Sec. III, version to appear in Phys. Rev.

    Coulomb Gaps in One-Dimensional Spin-Polarized Electron Systems

    Full text link
    We investigate the density of states (DOS) near the Fermi energy of one-dimensional spin-polarized electron systems in the quantum regime where the localization length is comparable to or larger than the inter-particle distance. The Wigner lattice gap of such a system, in the presence of weak disorder, can occur precisely at the Fermi energy, coinciding with the Coulomb gap in position. The interplay between the two is investigated by treating the long-range Coulomb interaction and the random disorder potential in a self-consistent Hartree-Fock approximation. The DOS near the Fermi energy is found to be well described by a power law whose exponent decreases with increasing disorder strength.Comment: 4 pages, revtex, 4 figures, to be published in Phys. Rev. B as a Rapid Communicatio

    On The Mobile Behavior of Solid 4^4He at High Temperatures

    Full text link
    We report studies of solid helium contained inside a torsional oscillator, at temperatures between 1.07K and 1.87K. We grew single crystals inside the oscillator using commercially pure 4^4He and 3^3He-4^4He mixtures containing 100 ppm 3^3He. Crystals were grown at constant temperature and pressure on the melting curve. At the end of the growth, the crystals were disordered, following which they partially decoupled from the oscillator. The fraction of the decoupled He mass was temperature and velocity dependent. Around 1K, the decoupled mass fraction for crystals grown from the mixture reached a limiting value of around 35%. In the case of crystals grown using commercially pure 4^4He at temperatures below 1.3K, this fraction was much smaller. This difference could possibly be associated with the roughening transition at the solid-liquid interface.Comment: 15 pages, 6 figure

    Magnetothemopower study of quasi two-dimensional organic conductor α\alpha-(BEDT-TTF)2_2KHg(SCN)4_4

    Full text link
    We have used a low-frequency magneto-thermopower (MTEP) method to probe the high magnetic field ground state behavior of α\alpha-(BEDT-TTF)2_2KHg(SCN)4_4 along all three principal crystallographic axes at low temperatures. The thermopower tensor coefficients (Sxx,SyxS_{xx}, S_{yx} and SzzS_{zz}) have been measured to 30 T, beyond the anomalous low temperature, field-induced transition at 22.5 T. We find a significant anisotropy in the MTEP signal, and also observe large quantum oscillations associated with the de Haas - van Alphen effect. The anisotropy indicates that the ground state properties are clearly driven by mechanisms that occur along specific directions for the in-plane electronic structure. Both transverse and longitudinal magnetothermopower show asymptotic behavior in field, which can be explained in terms of magnetic breakdown of compensated closed orbits.Comment: 9 pages, 10 figure

    Boost operators in Coulomb-gauge QCD: the pion form factor and Fock expansions in phi radiative decays

    Get PDF
    In this article we rederive the Boost operators in Coulomb-Gauge Yang-Mills theory employing the path-integral formalism and write down the complete operators for QCD. We immediately apply them to note that what are usually called the pion square, quartic... charge radii, defined from derivatives of the pion form factor at zero squared momentum transfer, are completely blurred out by relativistic and interaction corrections, so that it is not clear at all how to interpret these quantities in terms of the pion charge distribution. The form factor therefore measures matrix elements of powers of the QCD boost and Moeller operators, weighted by the charge density in the target's rest frame. In addition we remark that the decomposition of the eta' wavefunction in quarkonium, gluonium, ... components attempted by the KLOE collaboration combining data from phi radiative decays, requires corrections due to the velocity of the final state meson recoiling against a photon. This will be especially important if such decompositions are to be attempted with data from J/psi decays.Comment: 14 pages, 4 figure

    Comparing benefits from many possible computed tomography lung cancer screening programs: Extrapolating from the National Lung Screening Trial using comparative modeling

    Get PDF
    Background: The National Lung Screening Trial (NLST) demonstrated that in current and former smokers aged 55 to 74 years, with at least 30 pack-years of cigarette smoking history and who had quit smoking no more than 15 years ago, 3 annual computed tomography (CT) screens reduced lung cancer-specific mortality by 20% relative to 3 annual chest X-ray screens. We compared the benefits achievable with 576 lung cancer screening programs that varied CT screen number and frequency, ages of screening, and eligibility based on smoking. Methods and Findings: We used five independent microsimulation models with lung cancer natural history parameters previously calibrated to the NLST to simulate life histories of the US cohort born in 1950 under all 576 programs. 'Efficient' (within model) programs prevented the greatest number of lung cancer deaths, compared to no screening, for a given number of CT screens. Among 120 'consensus efficient' (identified as efficient across models) programs, the average starting age was 55 years, the stopping age was 80 or 85 years, the average minimum pack-years was 27, and the maximum years since quitting was 20. Among consensus efficient programs, 11% to 40% of the cohort was screened, and 153 to 846 lung cancer deaths were averted per 100,000 people. In all models, annual screening based on age and smoking eligibility in NLST was not efficient; continuing screening to age 80 or 85 years was more efficient. Conclusions: Consensus results from five models identified a set of efficient screening programs that include annual CT lung cancer screening using criteria like NLST eligibility but extended to older ages. Guidelines for screening should also consider harms of screening and individual patient characteristics

    Inverse Neutrinoless Double Beta Decay Revisited

    Get PDF
    We critically reexamine the prospects for the observation of the ΔL=2\Delta L=2 lepton-number-violating process \eeWW using the eee^-e^- option of a high-energy e+ee^+e^- collider (NLC). We find that, except in the most contrived scenarios, constraints from neutrinoless double beta decay render the process unobservable at an NLC of s<2\sqrt{s}<2 TeV. Other ΔL=2\Delta L=2 processes such as \ggllww, \egnllw, \eennll (=μ,τ\ell=\mu,\tau), and \egeww, which use various options of the NLC, require a s\sqrt{s} of at least 4 TeV for observability.Comment: paper in LATEX, 24 pages, 10 figures in separate uuencoded psfile. Complete psfile available via anonymous ftp at ftp://lapphp0.in2p3.fr/pub/preprints-theorie/doublebeta.uu or via www at http://lapphp0.in2p3.fr/preplapp/psth/doublebeta.ps.g

    Evolution of cosmological perturbations in non-singular string cosmologies

    Full text link
    In a class of non-singular cosmologies derived from higher-order corrections to the low-energy bosonic string action, we derive evolution equations for the most general cosmological scalar, vector and tensor perturbations. In the large scale limit, the evolutions of both scalar and tensor perturbations are characterised by conserved quantities, the usual curvature perturbation in the uniform-field gauge and the tensor-type perturbed metric. The vector perturbation is not affected, being described by the conservation of the angular momentum of the fluid component in the absence of any additional dissipative process. For the scalar- and tensor-type perturbations, we show how, given a background evolution during kinetic driven inflation of the dilaton field, we can obtain the final power spectra generated from the vacuum quantum fluctuations of the metric and the dilaton field during the inflation.Comment: 11 pages, 2 figures, submitted to Phys. Rev.

    Longitudinal double-spin asymmetry and cross section for inclusive neutral pion production at midrapidity in polarized proton collisions at sqrt(s) = 200 GeV

    Get PDF
    We report a measurement of the longitudinal double-spin asymmetry A_LL and the differential cross section for inclusive Pi0 production at midrapidity in polarized proton collisions at sqrt(s) = 200 GeV. The cross section was measured over a transverse momentum range of 1 < p_T < 17 GeV/c and found to be in good agreement with a next-to-leading order perturbative QCD calculation. The longitudinal double-spin asymmetry was measured in the range of 3.7 < p_T < 11 GeV/c and excludes a maximal positive gluon polarization in the proton. The mean transverse momentum fraction of Pi0's in their parent jets was found to be around 0.7 for electromagnetically triggered events.Comment: 6 pages, 3 figures, submitted to Phys. Rev. D (RC

    High pTp_{T} non-photonic electron production in pp+pp collisions at s\sqrt{s} = 200 GeV

    Get PDF
    We present the measurement of non-photonic electron production at high transverse momentum (pT>p_T > 2.5 GeV/cc) in pp + pp collisions at s\sqrt{s} = 200 GeV using data recorded during 2005 and 2008 by the STAR experiment at the Relativistic Heavy Ion Collider (RHIC). The measured cross-sections from the two runs are consistent with each other despite a large difference in photonic background levels due to different detector configurations. We compare the measured non-photonic electron cross-sections with previously published RHIC data and pQCD calculations. Using the relative contributions of B and D mesons to non-photonic electrons, we determine the integrated cross sections of electrons (e++e2\frac{e^++e^-}{2}) at 3 GeV/c<pT< c < p_T <~10 GeV/cc from bottom and charm meson decays to be dσ(Be)+(BDe)dyeye=0{d\sigma_{(B\to e)+(B\to D \to e)} \over dy_e}|_{y_e=0} = 4.0±0.5\pm0.5({\rm stat.})±1.1\pm1.1({\rm syst.}) nb and dσDedyeye=0{d\sigma_{D\to e} \over dy_e}|_{y_e=0} = 6.2±0.7\pm0.7({\rm stat.})±1.5\pm1.5({\rm syst.}) nb, respectively.Comment: 17 pages, 17 figure
    corecore