3,328 research outputs found
Effect of substrate temperature on the magnetic tunnel junction material etching using inductively coupled CH 3 OH plasma
It is very challenging to develop reactive ion etching of the magnetic tunnel junction (MTJ) in STT-MRAM due to the non-volatility of etching byproduct. Furthermore, the conventional reactive ion etching using chlorine based chemistry shows corrosion after MTJ etching. To avoid this corrosion, non-corrosive gases such as CO/ NH 3 and CH 3 OH were introduced in MTJ etch recently
Quantitative Assessment of Neovascularization after Indirect Bypass Surgery: Color-Coded Digital Subtraction Angiography in Pediatric Moyamoya Disease
ABSTRACT BACKGROUND AND PURPOSE: For the postoperative follow-up in pediatric patients with Moyamoya disease, it is essential to evaluate the degree of neovascularization status. Our aim was to quantitatively assess the neovascularization status after bypass surgery in pediatric Moyamoya disease by using color-coded digital subtraction angiography
Droplet-like Fermi surfaces in the anti-ferromagnetic phase of EuFeAs, an Fe-pnictide superconductor parent compound
Using angle resolved photoemission it is shown that the low lying electronic
states of the iron pnictide parent compound EuFeAs are strongly
modified in the magnetically ordered, low temperature, orthorhombic state
compared to the tetragonal, paramagnetic case above the spin density wave
transition temperature. Back-folded bands, reflected in the orthorhombic/
anti-ferromagnetic Brillouin zone boundary hybridize strongly with the
non-folded states, leading to the opening of energy gaps. As a direct
consequence, the large Fermi surfaces of the tetragonal phase fragment, the low
temperature Fermi surface being comprised of small droplets, built up of
electron and hole-like sections. These high resolution ARPES data are therefore
in keeping with quantum oscillation and optical data from other undoped
pnictide parent compounds.Comment: 4 figures, 6 page
Acute urinary retention in a 23-year-old woman with mild encephalopathy with a reversible splenial lesion: a case report
<p>Abstract</p> <p>Introduction</p> <p>Patients with clinically mild encephalitis/encephalopathy with a reversible splenial lesion present with relatively mild central nervous system disturbances. Although the exact etiology of the condition remains poorly understood, it is thought to be associated with infective agents. We present a case of a patient with mild encephalitis/encephalopathy with a reversible splenial lesion, who had the unusual feature of acute urinary retention.</p> <p>Case presentation</p> <p>A 23-year-old Japanese woman developed mild confusion, gait ataxia, and urinary retention seven days after onset of fever and headache. Magnetic resonance imaging demonstrated T2 prolongation in the splenium of the corpus callosum and bilateral cerebral white matter. These magnetic resonance imaging abnormalities disappeared two weeks later, and all of the symptoms resolved completely within four weeks. Except for the presence of acute urinary retention (due to underactive detrusor without hyper-reflexia), the clinical and radiologic features of our patient were consistent with those of previously reported patients with mild encephalitis/encephalopathy with a reversible splenial lesion. To the best of our knowledge, this is the first report of acute urinary retention recognized in a patient with mild encephalitis/encephalopathy with a reversible splenial lesion.</p> <p>Conclusion</p> <p>Our findings suggest that mild encephalitis/encephalopathy with a reversible splenial lesion can be associated with impaired bladder function and indicate that acute urinary retention in this benign disorder should be treated immediately to avoid bladder injury.</p
Genetic Susceptibility on CagA-Interacting Molecules and Gene-Environment Interaction with Phytoestrogens: A Putative Risk Factor for Gastric Cancer
OBJECTIVES: To evaluate whether genes that encode CagA-interacting molecules (SRC, PTPN11, CRK, CRKL, CSK, c-MET and GRB2) are associated with gastric cancer risk and whether an interaction between these genes and phytoestrogens modify gastric cancer risk. METHODS: In the discovery phase, 137 candidate SNPs in seven genes were analyzed in 76 incident gastric cancer cases and 322 matched controls from the Korean Multi-Center Cancer Cohort. Five significant SNPs in three genes (SRC, c-MET and CRK) were re-evaluated in 386 cases and 348 controls in the extension phase. Odds ratios (ORs) for gastric cancer risk were estimated adjusted for age, smoking, H. pylori seropositivity and CagA strain positivity. Summarized ORs in the total study population (462 cases and 670 controls) were presented using pooled- and meta-analysis. Plasma concentrations of phytoestrogens (genistein, daidzein, equol and enterolactone) were measured using the time-resolved fluoroimmunoassay. RESULTS: SRC rs6122566, rs6124914, c-MET rs41739, and CRK rs7208768 showed significant genetic effects for gastric cancer in both the pooled and meta-analysis without heterogeneity (pooled OR = 3.96 [95% CI 2.05-7.65], 1.24 [95% CI = 1.01-1.53], 1.19 [95% CI = 1.01-1.41], and 1.37 [95% CI = 1.15-1.62], respectively; meta OR = 4.59 [95% CI 2.74-7.70], 1.36 [95% CI = 1.09-1.70], 1.20 [95% CI = 1.00-1.44], and 1.32 [95% CI = 1.10-1.57], respectively). Risk allele of CRK rs7208768 had a significantly increased risk for gastric cancer at low phytoestrogen levels (p interaction<0.05). CONCLUSIONS: Our findings suggest that SRC, c-MET and CRK play a key role in gastric carcinogenesis by modulating CagA signal transductions and interaction between CRK gene and phytoestrogens modify gastric cancer risk
Alpha backgrounds in NaI(Tl) crystals of COSINE-100
COSINE-100 is a dark matter direct detection experiment with 106 kg NaI(Tl)
as the target material. 210Pb and daughter isotopes are a dominant background
in the WIMP region of interest and are detected via beta decay and alpha decay.
Analysis of the alpha channel complements the background model as observed in
the beta/gamma channel. We present the measurement of the quenching factors and
Monte Carlo simulation results and activity quantification of the alpha decay
components of the COSINE-100 NaI(Tl) crystals. The data strongly indicate that
the alpha decays probabilistically undergo two possible quenching factors but
require further investigation. The fitted results are consistent with
independent measurements and improve the overall understanding of the
COSINE-100 backgrounds. Furthermore, the half-life of 216Po has been measured
to be 143.4 +/- 1.2 ms, which is consistent with and more precise than recent
measurements
Direct Observation of Cooperative Protein Structural Dynamics of Homodimeric Hemoglobin from 100 ps to 10 ms with Pump–Probe X-ray Solution Scattering
Proteins serve as molecular machines in performing their biological functions, but the detailed structural transitions are difficult to observe in their native aqueous environments in real time. For example, despite extensive studies, the solution-phase structures of the intermediates along the allosteric pathways for the transitions between the relaxed (R) and tense (T) forms have been elusive. In this work, we employed picosecond X-ray solution scattering and novel structural analysis to track the details of the structural dynamics of wild-type homodimeric hemoglobin (HbI) from the clam Scapharca inaequivalvis and its F97Y mutant over a wide time range from 100 ps to 56.2 ms. From kinetic analysis of the measured time-resolved X-ray solution scattering data, we identified three structurally distinct intermediates (I-1, I-2, and I-3) and their kinetic pathways common for both the wild type and the mutant. The data revealed that the singly liganded and unliganded forms of each intermediate share the same structure, providing direct evidence that the ligand photolysis of only a single subunit induces the same structural change as the complete photolysis of both subunits does. In addition, by applying novel structural analysis to the scattering data, we elucidated the detailed structural changes in the protein, including changes in the heme heme distance, the quaternary rotation angle of subunits, and interfacial water gain/loss. The earliest, R-like I-1 intermediate is generated within 100 ps and transforms to the R-like I-2 intermediate with a time constant of 3.2 +/- 0.2 ns. Subsequently, the late, T-like I-3 intermediate is formed via subunit rotation, a decrease in the heme-heme distance, and substantial gain of interfacial water and exhibits ligation-dependent formation kinetics with time constants of 730 +/- 120 ns for the fully photolyzed form and 5.6 +/- 0.8 mu s for the partially photolyzed form. For the mutant, the overall kinetics are accelerated, and the formation of the T-like I-3 intermediate involves interfacial water loss (instead of water entry) and lacks the contraction of the heme-heme distance, thus underscoring the dramatic effect of the F97Y mutation. The ability to keep track of the detailed movements of the protein in aqueous solution in real time provides new insights into the protein structural dynamics.1149sciescopu
- …