46 research outputs found

    BallGAN: 3D-aware Image Synthesis with a Spherical Background

    Full text link
    3D-aware GANs aim to synthesize realistic 3D scenes such that they can be rendered in arbitrary perspectives to produce images. Although previous methods produce realistic images, they suffer from unstable training or degenerate solutions where the 3D geometry is unnatural. We hypothesize that the 3D geometry is underdetermined due to the insufficient constraint, i.e., being classified as real image to the discriminator is not enough. To solve this problem, we propose to approximate the background as a spherical surface and represent a scene as a union of the foreground placed in the sphere and the thin spherical background. It reduces the degree of freedom in the background field. Accordingly, we modify the volume rendering equation and incorporate dedicated constraints to design a novel 3D-aware GAN framework named BallGAN. BallGAN has multiple advantages as follows. 1) It produces more reasonable 3D geometry; the images of a scene across different viewpoints have better photometric consistency and fidelity than the state-of-the-art methods. 2) The training becomes much more stable. 3) The foreground can be separately rendered on top of different arbitrary backgrounds.Comment: Project Page: https://minjung-s.github.io/ballga

    Plasmacytoid Dendritic Cells Contribute to the Protective Immunity Induced by Intranasal Treatment with Fc-fused Interleukin-7 against Lethal Influenza Virus Infection

    Get PDF
    Developing a novel vaccine that can be applied against multiple strains of influenza virus is of utmost importance to human health. Previously, we demonstrated that the intranasal introduction of Fc-fused IL-7 (IL-7-mFc), a long-acting cytokine fusion protein, confers long-lasting prophylaxis against multiple strains of influenza A virus (IAV) by inducing the development of lung-resident memory-like T cells, called TRM-like cells. Here, we further investigated the mechanisms of IL-7-mFc-mediated protective immunity to IAVs. First, we found that IL-7-mFc treatment augments the accumulation of pulmonary T cells in 2 ways: recruiting blood circulating T cells into the lung and expanding T cells at the lung parenchyma. Second, the blockade of T cell migration from the lymph nodes (LNs) with FTY720 treatment was not required for mounting the protective immunity to IAV with IL-7-mFc, suggesting a more important role of IL-7 in T cells in the lungs. Third, IL-7-mFc treatment also recruited various innate immune cells into the lungs. Among these cells, plasmacytoid dendritic cells (pDCs) play an important role in IL-7-mFc-mediated protective immunity through reducing the immunopathology and increasing IAV-specific cytotoxic T lymphocyte (CTL) responses. In summary, our results show that intranasal treatment with IL-7-mFc modulates pulmonary immune responses to IAV, affecting both innate and adaptive immune cells. ? 2017. The Korean Association of Immunologists.112Ysciescopuskc

    Low-density lipoprotein cholesterol goal attainment rates in high-risk patients with cardiovascular diseases and diabetes mellitus in Korea: a retrospective cohort study

    Get PDF
    Background Real-world evidence of low-density lipoprotein cholesterol (LDL-C) goal attainment rates for Asian patients is deficient. The objective of this study was to assess the status of dyslipidemia management, especially in high-risk patients with cardiovascular disease (CVD) including stroke and acute coronary syndrome (ACS). Methods This was a retrospective cohort study of 514,866 subjects from the National Health Insurance Service-National Health Screening Cohort database in Korea. Participants were followed up from 2002 to 2015. Subjects with a high-risk of CVD prior to LDL-C measurement and subjects who were newly-diagnosed for high-risk of CVD following LDL-C measurement were defined as known high-risk patients (n = 224,837) and newly defined high-risk patients (n = 127,559), respectively. Data were analyzed by disease status: stroke, ACS, coronary heart disease (CHD), peripheral artery disease (PAD), diabetes mellitus (DM) and atherosclerotic artery disease (AAD). Results Overall, less than 50% of patients in each disease category achieved LDL-C goals (LDL-C < 70 mg/dL in patients with stroke, ACS, CHD and PAD; and LDL-C < 100 mg/dL in patients with DM and AAD). Statin use was observed in relatively low proportions of subjects (21.5% [known high-risk], 34.4% [newly defined high-risk]). LDL-C goal attainment from 2009 to 2015 steadily increased but the goal-achiever proportion of newly defined high-risk patients with ACS remained reasonably constant (38.7% in 2009; 38.1% in 2015). Conclusions LDL-C goal attainment rates in high-risk patients with CVD and DM in Korea demonstrate unmet medical needs. Proactive management is necessary to bridge the gap between the recommendations of clinical guidelines and actual clinical practice.This study was supported by a research grant from Amgen, Inc

    Acute high-dose and chronic lifetime exposure to alcohol consumption and differentiated thyroid cancer: T-CALOS Korea

    Get PDF
    Source: doi: 10.1371/journal.pone.0151562Background: This study evaluated the effects of acute high-dose and chronic lifetime exposure to alcohol and exposure patterns on the development of differentiated thyroid cancer (DTC). Methods: The Thyroid Cancer Longitudinal Study (T-CALOS) included 2,258 DTC patients (449 men and 1,809 women) and 22,580 healthy participants (4,490 men and 18,090 women) who were individually matched by age, gender, and enrollment year. In-person interviews were conducted with a structured questionnaire to obtain epidemiologic data. Clinicopathologic features of the patients were obtained by chart reviews. Odds ratios (ORs) and 95% confidence intervals (95%CI) were estimated using conditional regression models. Results: While light or moderate drinking behavior was related to a reduced risk of DTC, acute heavy alcohol consumption (151 g or more per event or on a single occasion) was associated with increased risks in men (OR = 2.22, 95%CI = 1.27–3.87) and women (OR = 3.61, 95%CI = 1.52–8.58) compared with never-drinkers. The consumption of alcohol for 31 or more years was a significant risk factor for DTC for both men (31–40 years: OR = 1.58, 95%CI = 1.10– 2.28; 41+ years: OR = 3.46, 95%CI = 2.06–5.80) and women (31–40 years: OR = 2.18, 95%CI = 1.62–2.92; 41+ years: OR = 2.71, 95%CI = 1.36–5.05) compared with never-drinkers. The consumption of a large amount of alcohol on a single occasion was also a significant risk factor, even after restricting DTC outcomes to tumor size, lymph node metastasis, extrathyroidal extension and TNM stage. Conclusion: The findings of this study suggest that the threshold effects of acute high-dose alcohol consumption and long-term alcohol consumption are linked to an increased risk of DTC

    Association between Body Mass Index and Gastric Cancer Risk According to Effect Modification by Helicobacter pylori Infection

    Get PDF
    Purpose Few studies investigated roles of body mass index (BMI) on gastric cancer (GC) risk according to Helicobacter pylori infection status. This study was conducted to evaluate associations between BMI and GC risk with consideration of H. pylori infection information. Materials and Methods We performed a case-cohort study (n=2,458) that consists of a subcohort (n=2,193 including 67 GC incident cases) randomly selected from the Korean Multicenter Cancer Cohort (KMCC) and 265 incident GC cases outside of the subcohort. H. pylori infection was assessed using an immunoblot assay. GC risk according to BMI was evaluated by calculating hazard ratios (HRs) and their 95% confidence intervals (95% CIs) using weighted Cox hazard regression model. Results Increased GC risk in lower BMI group (= 25 kg/m(2)) showed non-significantly increased GC risk (HR, 10.82; 95% CI, 1.25 to 93.60 and HR, 11.33; 95% CI, 1.13 to 113.66, respectively). However, these U-shaped associations between BMI and GC risk were not observed in the group who had ever been infected by H. pylori. Conclusion This study suggests the U-shaped associations between BMI and GC risk, especially in subjects who had never been infected by H. pylori.Peer reviewe

    Diacetyl odor shortens longevity conferred by food deprivation in C. elegans via downregulation of DAF-16/FOXO

    Get PDF
    Dietary restriction extends lifespan in various organisms by reducing the levels of both nutrients and non-nutritional food-derived cues. However, the identity of specific food-derived chemical cues that alter lifespan remains unclear. Here, we identified several volatile attractants that decreased the longevity on food deprivation, a dietary restriction regimen in Caenorhabditis elegans. In particular, we found that the odor of diacetyl decreased the activity of DAF-16/FOXO, a life-extending transcription factor acting downstream of insulin/IGF-1 signaling. We then demonstrated that the odor of lactic acid bacteria, which produce diacetyl, reduced the nuclear accumulation of DAF-16/FOXO. Unexpectedly, we showed that the odor of diacetyl decreased longevity independently of two established diacetyl receptors, ODR-10 and SRI-14, in sensory neurons. Thus, diacetyl, a food-derived odorant, may shorten food deprivation-induced longevity via decreasing the activity of DAF-16/FOXO through binding to unidentified receptors. © 2020 The Authors. Aging Cell published by the Anatomical Society and John Wiley &amp; Sons Ltd.1

    The Effect of Breastfeeding Duration and Parity on the Risk of Epithelial Ovarian Cancer: A Systematic Review and Meta-analysis

    Get PDF
    Review Objectives: We conducted a systematic review and meta-analysis to summarize current evidence regarding the association of parity and duration of breastfeeding with the risk of epithelial ovarian cancer (EOC). Methods: A systematic search of relevant studies published by December 31, 2015 was performed in PubMed and EMBASE. A random-effect model was used to obtain the summary relative risks (RRs) and 95% confidence intervals (CIs). Results: Thirty-two studies had parity categories of 1, 2, and ≥3. The summary RRs for EOC were 0.72 (95% CI, 0.65 to 0.79), 0.57 (95% CI, 0.49 to 0.65), and 0.46 (95% CI, 0.41 to 0.52), respectively. Small to moderate heterogeneity was observed for one birth (p&lt;0.01; Q=59.46; I 2 =47.9%). Fifteen studies had breastfeeding categories of &lt;6 months, 6-12 months, and &gt;13 months. The summary RRs were 0.79 (95% CI, 0.72 to 0.87), 0.72 (95% CI, 0.64 to 0.81), and 0.67 (95% CI, 0.56 to 0.79), respectively. Only small heterogeneity was observed for &lt;6 months of breastfeeding (p=0.17; Q=18.79, I 2 =25.5%). Compared to nulliparous women with no history of breastfeeding, the joint effects of two births and &lt;6 months of breastfeeding resulted in a 0.5-fold reduced risk for EOC. Conclusions: The first birth and breastfeeding for &lt;6 months were associated with significant reductions in EOC risk. Key words: Ovarian neoplasms, Parity, Breast feeding, Reproduction, Risk factors, Meta-analysis Received: June 29, 2016 Accepted: September 8, 2016 Corresponding author: Suekyung Park, MD, PhD 103 Daehak-ro, Jongno-gu, Seoul 03080, Korea Tel: +82-2-740-8338, Fax: +82-2-747-4830 E-mail: [email protected] This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/4.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. INTRODUCTION Worldwide, ovarian cancer is the seventh most common cancer in women. Furthermore, it is the sixth leading cause of cancer deaths in women and the second most common cause of death among those with gynecologic cancers 350 to 8%), germ cell tumors (3% to 5%), and other rare types of ovarian cancer Most ovarian cancers are life-threatening and are notorious for having a poor prognosis, as they are usually diagnosed at an advanced stage. Moreover, screening results based on pelvic imaging or tumor markers for early detection remain unsatisfactory Reproductive risk factors for epithelial ovarian cancer (EOC) have been extensively explored in epidemiologic studies. For instance, a pooled analysis of 12 US case-control studies in 1992 showed that parous women and those who had breastfed had a lower risk of EOC Since 1992, many studies from around the world have reported associations of parity and breastfeeding with ovarian cancer. However, findings concerning the protective role of increasing parity and duration of breastfeeding remain inconsistent. For parity, some studies have indicated that the first birth reduces ovarian cancer risk more than subsequent births Therefore, we conducted a systematic review and metaanalysis to summarize the current evidence regarding the association of parity and duration of breastfeeding with EOC risk. The aim of this study was to clarify the threshold for risk reduction among the studies without heterogeneity across the results. An additional aim was to perform a meta-analysis to estimate the joint risk reductions associated with parity and breastfeeding. METHODS Search Strategy We performed a literature search including studies published through December 2015 using the following search terms in the PubMed and EMBASE databases (1) (parity or &quot;number of live births&quot;) and (ovary or ovarian) and (cancer or tumor or neoplasm or malignancy) or (2) (breastfeeding or lactation) and (ovary or ovarian) and (cancer or tumor or neoplasm or malignancy). Furthermore, to find any additional published studies, a manual search was performed by checking all references of prior meta-analyses [5,6.8,20-23] and of all the original studies. This systematic review was planned, conducted, and reported in adherence to the standards of quality for reporting meta-analyses Study Selection To be included, studies had to meet the following criteria: (1) the studies were observational (case-control or cohort studies), (2) the exposures of interest were the number of live births and the total duration of breastfeeding, (3) the outcome of interest was EOC, (4) odds ratios (ORs) or relative risk (RR) estimates with 95% confidence intervals (CIs) were reported or sufficient data were present to allow the calculation of these effect measures, and (5) articles were published in the English language. In the case of overlapping data, the study with the largest number of cases was included. As fertility treatments and BRCA mutation effects on EOC may alter the association between parity/breastfeeding and EOC [26], we excluded studies conducted on specific populations, such as BRCA-1 or BRCA-2 mutation carriers or infertile women treated with fertility drugs. The detailed steps of our literature search are shown in Data Extraction Data extraction was conducted independently by two authors. Disagreements were discussed and resolved by consensus. The following data were collected from each study: the first author&apos;s last name, publication year, study region and design, study period, participant age, sample size (cases and 351 Parity and Breastfeeding Effects on Ovarian Cancer Risk controls or cohort size), exposure variables (parity or total breastfeeding duration), study-specific adjusted RR or OR with 95% CIs for each exposure category, and factors matched or adjusted for in the design or data analysis. If no adjusted RR or OR was presented, we included crude estimates. If no RRs or ORs were presented in a given study, we calculated them and the 95% CIs according to the raw frequencies presented in the article. The quality of the study was assessed independently by two authors using the 9-star Newcastle-Ottawa Scale (range, 0 to 9 stars) Statistical Analysis The study-specific RRs or ORs with 95% CIs were used to determine the principal outcome. Because the OR closely approximates the RR for rare diseases, the RR can be estimated from a case-control study using the OR as an approximation One study did not provide the required risk estimates for analysis or separate the risk estimates for different categories of parity or breastfeeding duration. For this study, we used the method proposed by Fleiss and Gross [30]. This method allows adjusted effect estimates and CIs to be calculated for any alternative comparison of levels and can help in a dose-response meta-analysis. Briefly, we combined risk estimates obtained through a simple fixed-effects meta-analysis wherein the subjects were divided into unexposed groups (i=0) and exposed groups (i=1, …, n), and estimates (Ri) with lower and upper 95% CIs were available. To obtain the R1+, we meta-analyzed R1, R2, R3, …, Rn using a fixed-effect model. The categories of parity or breastfeeding duration varied across studies; accordingly, the number of studies included in each metaanalysis and the summary RRs in each meta-analysis were different depending upon the number of categories. Statistical heterogeneity among studies was evaluated with the Cochran Q and I-squared statistics 352 with ≤7 stars considered low-quality as per the 9-star Newcastle-Ottawa Scale; and (3) year of publication (&lt;2000, ≥ 2000), respectively. Publication bias was evaluated using the Begg rank correlation and the Egger linear regression test, in which p-vlaue &lt;0.05 were considered representative of statistically significant publication bias From the meta-analyzed result, to calculate the RR for the joint effect of parity and breastfeeding, we applied the log-linear dose-response model proposed by Berlin et al. We configured the following formula for the multivariate linear logit regression of two factors: Logit P=α + β1χ1 + β2χ2; where P is the probability of a particular outcome (EOC risk), α is the intercept from the linear regression equation, β is the regression coefficient multiplied by some value of the predictor, and χ is the risk factor (parity and breastfeeding). Using this equation yields the value of the RR for the joint effects of parity and breastfeeding duration. For example, in the case of a subject who has no risk factors, logit(P) is α. In this case, the probability of EOC is exp(α)=1.0. In the case of a subject with only χ1, logit(P) is α+β1. In the case of a subject with both χ1 and χ2, logit(P) is α+β1+β2. Accordingly, the probability of EOC is exp(β1+β2)=OR1×OR2. Since the category of parity and breastfeeding duration varied across studies, to calculate the RR for the joint effect of parity and breastfeeding, we used the summary RR for parity and breastfeeding duration that contained the largest number of studies. All statistical analyses were performed with Stata version 12.0 (StataCorp., College Station, TX, USA). RESULTS Study Characteristics The characteristics of the 32 studies included with data regarding parity and the 15 studies included with data regarding breastfeeding are shown in Supplemental 353 Parity and Breastfeeding Effects on Ovarian Cancer Risk Africa. For breastfeeding, two cohort studies and 13 case-control studies were included. The included studies were conducted between 1978 and 2008. Of the 15 studies, seven were performed in North America, six in Europe, one in Asia, and one in Australia. Parity and Epithelial Ovarian Cancer Risk Thirty-two studies had parity categories of 1, 2, and ≥3. The summary RRs for the first, second, and third births were 0.72 (95% CI, 0.65 to 0.79), 0.57 (95% CI, 0.49 to 0.65), and 0.46 (95% CI, 0.41 to 0.52), respectively Duration of Breastfeeding and Epithelial Ovarian Cancer Risk Fifteen studies had breastfeeding categories of &lt;6 months, 6-12 months, and ≥13 months. The summary RRs for these categories were 0.79 (95% CI, 0.72 to 0.87), 0.72 (95% CI, 0.64 to 0.81) and 0.67 (95% CI, 0.56 to 0.79), respectively Subgroup Analysis According to Study Design, Study Quality, and Publication Year The results from the subgroup analysis according to study design, study quality, and publication year are shown in Relative Risk for the Joint Effect of Parity and Breastfeeding The RR for the joint effect of parity and breastfeeding, obtained using the summary RR from the analysis of 32 studies with parity categories of 1, 2, and ≥3 and 15 studies with breastfeeding categories of &lt;6 months, 6-12 months, and ≥ 13 months, is shown in DISCUSSION The findings of this meta-analysis indicate that parity and breastfeeding experiences in women can help prevent EOC, which is typically life-threatening and has a poor prognosis. In particular, the first birth and the first six months of breastfeeding had a greater protective effect than did subsequent births and/or additional breastfeeding, although multiparity and additional breastfeeding did provide some additional protection. The risk reduction effect of the first birth on EOC risk was almost 30%, and the combined effect of the first birth and &lt;6 months of breastfeeding was 40%; thus, breastfeeding provided a nearly 10% greater risk reduction. In regards to parity, the EOC risk reduction was highest for the first birth, with some additional protection from the second birth. However, slightly less risk reduction was observed for the third birth Pregnancy and breastfeeding are thought to reduce EOC risk Ho Kyung Sung, et al. 354 by decreasing pituitary gonadotropin levels and inducing anovulation [7,35]. Pregnancy and breastfeeding are expected to decrease the likelihood of spontaneous genetic mutation under the incessant ovulation hypothesis and of the hyperproliferation of inclusion cysts under the gonadotropin hypothesis. However, the observation that multiparity and additional breastfeeding did not provide an equal amount of protection does not provide evidence for either of these hypotheses. Nev- The summary RRs (95% CIs) in each meta-analysis were estimated using a random effect model. 3 Studies with ≥8 stars were considered high-quality as per the 9-star Newcastle-Ottawa Scale. 4 Studies with ≤7 stars were considered low-quality as per the 9-star Newcastle-Ottawa Scale. 355 Parity and Breastfeeding Effects on Ovarian Cancer Risk ertheless, the results of two experimental studies provide biological evidence for the relatively weaker protective effect of additional parity and breastfeeding [36,37]. For instance, high progesterone levels during pregnancy can increase apoptosis, which may clear transformed cells from the ovarian epithelium, meaning that all the accumulated transformed cells are washed fully out by the first pregnancy. Therefore, the first pregnancy provides a stronger protective effect than subsequent pregnancies [36]. In regards to breastfeeding, breastfeeding in the first few months completely inhibits the pulsatile secretion of gonadotropin-releasing hormone and luteinizing hormone, leading to suppression of ovulation [37]. After a couple of months, ovulatory activity may return, even though breastfeeding continues [37]; thus, a longer duration of breastfeeding does not provide an additional protective effect. Our finding of decreased EOC risk with longer breastfeeding is similar to that reported by prior meta-analyses in 2013 and 2014 [22,23], but differs from that of a meta-analysis of nine case-control studies conducted in developed countries in 2001, in which breastfeeding for ≥12 months was associated with a significant 0.72-fold reduced risk of EOC compared to never having breastfed, while breastfeeding &lt;12 months did not show such an association (OR, 0.95; 95% CI, 0.80 to 1.12) The strength of this meta-analysis is that it included all available studies, and the large number of EOC cases allowed for the investigation of the risk associated with different categories of parity and breastfeeding duration. However, the current study also has several limitations. First, our meta-analysis wa
    corecore