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1  |  INTRODUC TION, RESULTS, 
DISCUSSION

Dietary restriction (DR) promotes longevity by reducing nutrients 
and restricting access to food-derived cues. In Drosophila melanogas-
ter, odorants derived from live yeast decrease longevity conferred 
by DR (Libert et al., 2007). In Caenorhabditis elegans, food-derived 
soluble cues shorten longevity conferred by food deprivation (FD) 
(Smith et al., 2008), a DR regimen that completely removes both nu-
trients and chemical cues (Kaeberlein et al., 2006; Lee et al., 2006; 

Steinkraus et al., 2008; Sutphin & Kaeberlein, 2008), via downreg-
ulating DAF-16/FOXO signaling (Artan et al., 2016). However, the 
identity of the specific food-derived chemical cues that can alter 
aging and lifespan remains unknown.

Here we sought to identify bacteria-derived volatile chemi-
cals that act as signaling molecules to modulate lifespan. We first 
tested whether C.  elegans lifespan was altered by any of seven 
volatile organic compounds that have been established as attrac-
tants (Bargmann, 2006; Bargmann et al., 1993; Sengupta et al., 
1996): diacetyl, 2,3-pentanedione, 2,4,5-trimethylthiazole (TMT), 
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Abstract
Dietary restriction extends lifespan in various organisms by reducing the levels of 
both nutrients and non-nutritional food-derived cues. However, the identity of spe-
cific food-derived chemical cues that alter lifespan remains unclear. Here, we identi-
fied several volatile attractants that decreased the longevity on food deprivation, a 
dietary restriction regimen in Caenorhabditis elegans. In particular, we found that the 
odor of diacetyl decreased the activity of DAF-16/FOXO, a life-extending transcrip-
tion factor acting downstream of insulin/IGF-1 signaling. We then demonstrated that 
the odor of lactic acid bacteria, which produce diacetyl, reduced the nuclear accu-
mulation of DAF-16/FOXO. Unexpectedly, we showed that the odor of diacetyl de-
creased longevity independently of two established diacetyl receptors, ODR-10 and 
SRI-14, in sensory neurons. Thus, diacetyl, a food-derived odorant, may shorten food 
deprivation-induced longevity via decreasing the activity of DAF-16/FOXO through 
binding to unidentified receptors.
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benzaldehyde, 1-propanol, 2-butanone, and isoamyl alcohol. We ex-
posed animals under FD to each of these seven volatile chemicals 
and measured lifespan (Figure 1a). Importantly, the chemoattrac-
tants diacetyl, 2,3-pentanedione, TMT, and benzaldehyde substan-
tially reduced the longevity induced by FD (Figure 1b-f). In contrast, 
exposure to 1-propanol, 2-butanone, or isoamyl alcohol did not af-
fect lifespan (Figure 1g-i).

We then tested whether these same seven volatile chemicals 
affected the nuclear localization of DAF-16/FOXO, which was in-
creased upon FD and linked to longevity (Artan et al., 2016; Fletcher 
& Kim, 2017; Henderson & Johnson, 2001) (Figure 1j-m). Exposure 
to diacetyl or 2,3-pentanedione substantially decreased the level of 
nuclear DAF-16::GFP (Figure 1n-p). In contrast, the odor of the other 
volatile chemicals, including TMT and benzaldehyde that reduced 
longevity conferred by FD, did not (Figure 1p). We concluded that 
diacetyl and 2,3-pentanedione may shorten longevity conferred by 
FD by decreasing the activity of DAF-16/FOXO.

We focused our analysis on diacetyl, which displayed the 
greatest effect on the subcellular localization of DAF-16/FOXO 
(Figure 1n-p), and reduced FD-mediated longevity (Figure 1b,c). 
We determined whether the odor of diacetyl affected the tran-
scriptional activity of DAF-16/FOXO by using qRT-PCR. Among 
five selected DAF-16 target genes upregulated by FD, the mRNA 
levels of sod-3, mtl-1, and hsp-12.6 were substantially reduced by 
the odor of diacetyl, whereas decreases in those of dod-11 and 
stdh-1 were not significant (Figure 1q and Figure S1). The odor 
of diacetyl also suppressed FD-induced longevity in daf-16(-); daf-
16AM::GFP worms (Figure 1r), which express constitutively nuclear 
DAF-16/FOXO (Lin et al., 2001). These data suggest that diace-
tyl decreases FD-mediated longevity by downregulating DAF-16/
FOXO via decreasing the transcriptional activity as well as its nu-
clear localization.

Next, we asked whether diacetyl decreased lifespan or DAF-16/
FOXO activity via acting through its known chemosensory recep-
tors, ODR-10 and SRI-14 (Sengupta et al., 1996; Taniguchi et al., 
2014). Unexpectedly, mutations in odr-10 and/or sri-14 did not abro-
gate the suppressive effect of diacetyl on longevity (Figure 2a-c) or 
the nuclear localization of DAF-16/FOXO upon FD (Figure 2d). These 
data suggest that diacetyl decreases lifespan and DAF-16/FOXO 

activity through unidentified chemical receptors (see Supporting 
Discussion).

We then sought to determine whether diacetyl produced under 
physiological conditions affected the activity of DAF-16/FOXO. 
We exposed C.  elegans to the odor of lactic acid bacteria (LAB), 
Lactobacillus paracasei, which produce diacetyl (Choi et al., 2016), 
and subsequently determined the subcellular localization of DAF-
16/FOXO. We found that the odor of diacetyl-producing L. pa-
racasei substantially reduced the nuclear localization of DAF-16/
FOXO (Figure 2e,f,h). In contrast, the odor of E. coli OP50 margin-
ally reduced the nuclear localization of DAF-16/FOXO (Figure 2g,h). 
We tested whether the odor of LAB or OP50 suppressed the lon-
gevity conferred by FD, but did not observe specific suppression 
(Figure 2i,j). These data suggest that diacetyl-producing LAB odor 
downregulates DAF-16/FOXO but is insufficient to alter longevity 
under FD (see Supporting Discussion).

Specific food-derived cues that modulate longevity conferred by FD 
remained unknown. Here, we showed that diacetyl produced by LAB, a 
potential diet of C. elegans in nature, decreased the activity of DAF-16/
FOXO, a longevity-promoting transcription factor acting downstream of 
insulin/IGF-1 signaling. We also found that the odor of diacetyl short-
ened FD-induced longevity. Food odor has been shown to trigger meta-
bolic and physiological changes in Drosophila (Lushchak et al., 2015), mice 
(Brandt et al., 2018), and humans (Smeets et al., 2010). Thus, it will be in-
teresting to determine whether specific food odors can affect longevity 
in other organisms, including mammals.
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F I G U R E  1 The odor of diacetyl decreases longevity conferred by food deprivation via downregulating DAF-16/FOXO. (a) Experimental 
scheme of lifespan assays with volatile chemicals. Fed day 2 adult worms were transferred to plates without bacteria (food deprivation: 
FD) with each of the volatile chemicals placed on the back of the plate lid. (b-i) The effect of diacetyl (b, c), 2,3-pentanedione (d), 
2,4,5-trimethylthiazole (TMT) (e), benzaldehyde (f), 1-propanol (g), 2-butanone (h), or isoamyl alcohol (i, see Supporting Discussion) on 
the lifespan of fed and FD animals. The odor of TMT, 2-butanone, or isoamyl alcohol reduced FD-mediated longevity in one out of two 
independent replicates (Table S1). The effect of diacetyl on lifespan without FUDR treatment (c, see note in Experimental Procedures). 
Lifespan curves for the chemical screen were obtained by pooling two independent experiments, but the statistical analysis of individual 
lifespan data is included in Table S1. (j-l) Images of daf-16::GFP transgenic worms under fed (j), FD (k), or FD followed by re-feeding with OP50 
(re-fed, l). (m) Increased nuclear localization of DAF-16::GFP by FD was suppressed in re-fed conditions (N = 4, >512 animals per condition). 
(n, o) Images of daf-16::GFP transgenic worms under FD (n) and FD with diacetyl (o). Scale bar: 50 µm. (p) The quantification of the effects of 
specific odors on the nuclear localization of DAF-16::GFP in animals under FD (N = 4, >100 animals per condition). (q) Expression changes of 
five selected DAF-16 target genes, sod-3, mtl-1, hsp-12.6, dod-11, and stdh-1, by FD and the odor of diacetyl (N = 5, p values were calculated 
against fed conditions [Figure S1]). *p < 0.05, **p < 0.01, ***p < 0.001, two-tailed Student's t test. Error bar: standard error of mean. (r) The 
life-shortening effects of diacetyl odor on daf-16(mu86); daf-16AM::GFP [daf-16(-); daf-16AM::GFP] worms under FD. See Table S1 for statistical 
analysis of the lifespan data
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