158 research outputs found

    COMPARATIVE CHEMOMETRIC PROFILES BETWEEN LEAF TISSUES OF WITHANIA SOMNIFERA CULTURED IN VITRO AND FIELD

    Get PDF
    Objective: Metabolomic profiling of herbal extracts is indispensable to standardize drugs and to inaugurate the scientific basis of their therapeutic properties. The present study was attempted with an objective to investigate a comparative GC-MS (Gas chromatography–Mass spectrometry) analysis of in vitro and field grown leaf tissues of “Indian ginseng”. Methods: GC-MS often serves the methods of option for screening and quantitative metabolite profiling. In the present study, metabolic profiling of methanolic extracts of field and in vitro cultured Withania somnifera (Ashwagandha) leaf tissues were carried out using GC–MS technique. Results: A total number of 39 primary metabolites in leaf were identified. These include alcohols, organic acids, purine, pyrimidine, sugars and putrescine. Highly significant qualitative and quantitative differences were noticed between the leaf tissues cultured in vitro and from the field. Especially, significant elevation in the accumulation of GABA (γ amino butyric acid) and putrescine was recorded in in vitro cultured leaf samples. Conclusion: We conclude that in vitro cultures offers an intrinsic advantage to produce therapeutically valuable compounds, relatively in a short span of time and this principle determine its use as an alternative to field grown sample

    Functional enhancement of neuronal cell behaviors and differentiation by elastin-mimetic recombinant protein presenting Arg-Gly-Asp peptides

    Get PDF
    Background: Integrin-mediated interaction of neuronal cells with extracellular matrix (ECM) is important for the control of cell adhesion, morphology, motility, and differentiation in both in vitro and in vivo systems. Arg-Gly-Asp (RGD) sequence is one of the most potent integrin-binding ligand found in many native ECM proteins. An elastin-mimetic recombinant protein, TGPG[VGRGD(VGVPG)6]20WPC, referred to as [RGD-V6]20, contains multiple RGD motifs to bind cell-surface integrins. This study aimed to investigate how surface-adsorbed recombinant protein can be used to modulate the behaviors and differentiation of neuronal cells in vitro. For this purpose, biomimetic ECM surfaces were prepared by isothermal adsorption of [RGD-V6]20 onto the tissue culture polystyrene (TCPS), and the effects of protein-coated surfaces on neuronal cell adhesion, spreading, migration, and differentiation were quantitatively measured using N2a neuroblastoma cells.Results: The [RGD-V6]20 was expressed in E. coli and purified by thermally-induced phase transition. N2a cell attachment to either [RGD-V6]20 or fibronectin followed hyperbolic binding kinetics saturating around 2 μM protein concentration. The apparent maximum cell binding to [RGD-V6]20 was approximately 96% of fibronectin, with half-maximal adhesion on [RGD-V6]20 and fibronectin occurring at a coating concentration of 2.4 × 10-7 and 1.4 × 10-7 M, respectively. The percentage of spreading cells was in the following order of proteins: fibronectin (84.3% ± 6.9%) > [RGD-V6]20 (42.9% ± 6.5%) > [V7]20 (15.5% ± 3.2%) > TCPS (less than 10%). The migration speed of N2a cells on [RGD-V6]20 was similar to that of cells on fibronectin. The expression of neuronal marker proteins Tuj1, MAP2, and GFAP was approximately 1.5-fold up-regulated by [RGD-V6]20 relative to TCPS. Moreover, by the presence of both [RGD-V6]20 and RA, the expression levels of NSE, TuJ1, NF68, MAP2, and GFAP were significantly elevated.Conclusion: We have shown that an elastin-mimetic protein consisting of alternating tropoelastin structural domains and cell-binding RGD motifs is able to stimulate neuronal cell behaviors and differentiation. In particular, adhesion-induced neural differentiation is highly desirable for neural development and nerve repair. In this context, our data emphasize that the combination of biomimetically engineered recombinant protein and isothermal adsorption approach allows for the facile preparation of bioactive matrix or coating for neural tissue regeneration. © 2012 Jeon et al.; licensee BioMed Central Ltd.1

    Ameliorating effects of Mango (Mangifera indica L.) fruit on plasma ethanol level in a mouse model assessed with 1H-NMR based metabolic profiling

    Get PDF
    The ameliorating effects of Mango (Mangifera indica L.) flesh and peel samples on plasma ethanol level were investigated using a mouse model. Mango fruit samples remarkably decreased mouse plasma ethanol levels and increased the activities of alcohol dehydrogenase and acetaldehyde dehydrogenase. The 1H-NMR-based metabolomic technique was employed to investigate the differences in metabolic profiles of mango fruits, and mouse plasma samples fed with mango fruit samples. The partial least squares-discriminate analysis of 1H-NMR spectral data of mouse plasma demonstrated that there were clear separations among plasma samples from mice fed with buffer, mango flesh and peel. A loading plot demonstrated that metabolites from mango fruit, such as fructose and aspartate, might stimulate alcohol degradation enzymes. This study suggests that mango flesh and peel could be used as resources for functional foods intended to decrease plasma ethanol level after ethanol uptake

    Detection of Infectious Hypodermal and Hematopoietic Necrosis Virus (IHHNV, Decapod Penstylhamaparvovirus 1) in Commodity Red Claw Crayfish (Cherax quadricarinatus) Imported into South Korea

    Get PDF
    Freshwater crayfish, which are cultivated in aquaculture, are economically important for food and ornamental purposes. However, relatively few studies have focused on potentially pathogenic viruses in crayfish compared to in penaeid shrimp. Commodity red claw crayfish (Cherax quadricarinatus; 400 crayfish in 10 batches) and red swamp crayfish (Procambarus clarkii; 40 crayfish in 2 batches) imported into South Korea from Indonesia and China were screened by PCR to detect infectious hypodermal and hematopoietic necrosis virus (IHHNV or Decapod penstylhamaparvovirus 1). IHHNV was detected in tissue samples pooled from nine out of ten batches of red claw crayfish imported from Indonesia. Phylogenetic analysis of PCR amplicons from representative pools clustered the IHHNV strain with infectious-type II sequences commonly detected in Southeast Asian countries rather than with type III strains detected previously in whiteleg shrimp (Penaeus vannamei) cultured in South Korea. IHHNV DNA was detected most frequently in the muscle (eight batches, 66.7% samples), followed by in the hepatopancreas (five batches, 41.7% samples) and gills tissue (three batches, 25.0% samples). These data suggest that red claw crayfish could be a potential carrier of the virus and that quarantine procedures must be strengthened in South Korea to avoid importing infectious types of IHHNV in commodity crustaceans such as red claw crayfish. © 2021 by the authors. Licensee MDPI, Basel, Switzerland.1

    Quantification of Enterocytozoon hepatopenaei (EHP) in Penaeid Shrimps from Southeast Asia and Latin America Using TaqMan Probe-Based Quantitative PCR

    Get PDF
    We developed a qPCR assay based on the β-tubulin gene sequence for the shrimp microsporidian parasite Enterocytozoon hepatopenaei (EHP). This assay reacted with the hepatopancreas (HP) of EHP-infected shrimps, and the highest copy numbers were found in HP and feces samples from Southeast Asian countries (106–108 copies mg−1), while HP samples from Latin America, Artemia, and EHP-contaminated water showed lower amounts (101–103 copies mg−1 or mL−1 of water). No false positive was found with the normal shrimp genome, live feeds, or other parasitic diseases. This tool will facilitate the management of EHP infection in shrimp farms. © 2019 by the authors. Licensee MDPI, Basel, Switzerland.1

    Case report: Fatal neonatal sepsis associated with Escherichia fergusonii infection in a common bottlenose dolphin (Tursiops truncatus)

    Get PDF
    A 25-day-old male common bottlenose dolphin (Tursiops truncatus) died suddenly while swimming at a dolphinarium. The gross examination revealed ulceration on the dorsal and pectoral fins and rostrum. Severe congestion, hemorrhage, and edema were observed in the gastrointestinal tract, liver, mesenteric lymph nodes, lungs, and kidneys. Fibrinosuppurative arthritis of the atlantooccipital joint and extension of fibrin into the spinal canal caused compression of the spinal cord. Histopathological examination revealed tracheitis, fibrinosuppurative bronchopneumonia and enteritis. In the central nervous system, meningeal vessel congestion in the brain, and intraparenchymal hemorrhages with neurodegeneration were observed in the spinal cord. Based on the histopathological findings, representative samples, including lung, liver, mesenteric lymph node, blood obtained from the jugular vein, and fluid sample of the ascites, were inoculated on tryptic soy agar and blood agar for routine bacterial isolation. Each isolated bacterial colony was streaked aseptically onto tryptic soy agar and blood agar for pure culture. After then, polymerase chain reaction (PCR) was performed for further identification of pathogenic microorganisms. PCR identified Escherichia fergusonii, Shewanella haliotis, Enterococcus faecalis, and Staphylococcus schleiferi. E. fergusonii was considered the primary etiologic agent in this case since it was the only species identified in all representative samples. The cause of death in this animal was E. fergusonii sepsis. To the best of our knowledge, this is the first case of neonatal sepsis associated with E. fergusonii infection in a dolphin, and suggests E. fergusonii as an opportunistic pathogen associated with sepsis in dolphins

    The Reliability and Validity of the Korean Version of the Structured Interview for Prodromal Syndrome

    Get PDF
    OBJECTIVE: The Structured Interview for Prodromal Syndrome (SIPS) from Yale University is intended to diagnose prodromal syndrome of psychosis and to measure the severity of prodromal symptoms. Here, a Korean version of SIPS is presented, and its reliability, validity, and factor structures are examined using a representative Korean sample. METHODS: The Korean version of SIPS was administered to 40 participants over a period of 1 year. The inter-rater reliability and internal consistency of the SIPS were then evaluated. In addition, its factor structure was investigated using principal-axis factor analysis. Concurrent validity was explored using Pearson correlation coefficients with the Positive and Negative Syndrome Scale (PANSS). RESULTS: Of the 40 subjects, 12.5% developed psychotic disorders during the 1-year follow-up period. Inter-rater reliability was good (intra-class correlations=0.96), and internal consistency was acceptable (Cronbach's alpha=0.83). A three-factor resolution displayed the best simple structure and accounted for 52.6% of all item variance. Factors 1 and 2 showed strong correlations with negative symptoms and cognitive dysfunction, respectively, on the PANSS. Factor 3 was not correlated with any factor on the PANSS. CONCLUSION: The Korean version of SIPS is a reliable instrument for the assessment of prodromal symptoms in subjects and may be used to evaluate prodromal psychosis.ope

    Effects of a Rubus coreanus Miquel supplement on plasma antioxidant capacity in healthy Korean men

    Get PDF
    Korean raspberry, Rubus coreanus Miquel (RCM), contains high concentrations of phenolic compounds, which prevent oxidative stress. To determine the effect of RCM on antioxidant capacity in humans, we assessed in vivo lipid oxidation and antioxidant enzyme activities from plasma in 15 healthy men. The subjects ingested 30 g of freeze-dried RCM daily for 4 weeks. Blood was taken at baseline and at the end of the study to determine blood lipid profiles, fasting plasma glucose, liver function, lipid peroxidation, and antioxidant enzyme activities. RCM supplementation had no effect on blood lipid or fasting plasma glucose concentrations but decreased alkaline phosphatase activity. RCM supplementation increased glutathione peroxidase activities (P < 0.05) but had no effect on lipid peroxidation. These results suggest that short-term RCM supplementation may offer health benefits by enhancing antioxidant capacity in a healthy population

    ZNF507 affects TGF-β signaling via TGFBR1 and MAP3K8 activation in the progression of prostate cancer to an aggressive state

    Get PDF
    Background: The progression of prostate cancer (PC) to the highly aggressive metastatic castration-resistant prostate cancer (mCRPC) or neuroendocrine prostate cancer (NEPC) is a fatal condition and the underlying molecular mechanisms are poorly understood. Here, we identified the novel transcriptional factor ZNF507 as a key mediator in the progression of PC to an aggressive state. Methods: We analyzed ZNF507 expression in the data from various human PC database and high-grade PC patient samples. By establishment of ZNF507 knockdown and overexpression human PC cell lines, we assessed in vitro PC phenotype changes including cell proliferation, survival, migration and invasion. By performing microarray with ZNF507 knockdown PC cells, we profiled the gene clusters affected by ZNF507 knockdown. Moreover, ZNF507 regulated key signal was evaluated by dual-luciferase reporter and chromatin immunoprecipitation (ChIP) assays. Finally, we performed xenograft and in vivo metastasis assay to confirm the effect of ZNF507 knockdown in PC cells. Results: We found that ZNF507 expression was increased, particularly in the highly graded PC. ZNF507 was also found to be associated with metastatic PC of a high grade. Loss- or gain-of-function–based analysis revealed that ZNF507 promotes the growth, survival, proliferation, and metastatic properties of PC (e.g., epithelial-mesenchymal transition) by upregulating TGF-β signaling. Profiling of gene clusters affected by ZNF507 knockdown revealed that ZNF507 positively regulated the transcription of TGFBR1, MAP3K8, and FURIN, which in turn promoted the progression of PC to highly metastatic and aggressive state. Conclusions: Our findings suggest that ZNF507 is a novel key regulator of TGF-β signaling in the progression of malignant PC and could be a promising target for studying the development of advanced metastatic PCs. © 2021, The Author(s).1
    corecore