20,000 research outputs found

    Combined quantum state preparation and laser cooling of a continuous beam of cold atoms

    Get PDF
    We use two-laser optical pumping on a continuous atomic fountain in order to prepare cold cesium atoms in the same quantum ground state. A first laser excites the F=4 ground state to pump the atoms toward F=3 while a second pi-polarized laser excites the F=3 -> F'=3 transition of the D2 line to produce Zeeman pumping toward m=0. To avoid trap states, we implement the first laser in a 2D optical lattice geometry, thereby creating polarization gradients. This configuration has the advantage of simultaneously producing Sisyphus cooling when the optical lattice laser is tuned between the F=4 -> F'=4 and F=4 -> F'=5 transitions of the D2 line, which is important to remove the heat produced by optical pumping. Detuning the frequency of the second pi-polarized laser reveals the action of a new mechanism improving both laser cooling and state preparation efficiency. A physical interpretation of this mechanism is discussed.Comment: Minor changes according to the recommendations of the referee: - Corrected Fig.1. - Split the graph of Fig.6 for clarity. - Added one reference. - Added two remarks in the conclusion. - Results unchange

    Quantum Computation and Simulation using Fermion-Pair Registers

    Full text link
    We propose and analyze an approach to realize quantum computation and simulation using fermionic particles under quantum gas microscopes. Our work is inspired by a recent experimental demonstration of large-scale quantum registers, where tightly localized fermion pairs are used to encode qubits exhibiting long coherence time and robustness against laser intensity noise. We describe how to engineer the SWAP gate and high-fidelity controlled-phase gates by adjusting the fermion hopping as well as Feshbach interaction strengths. Combined with previously demonstrated single-qubit rotations, these gates establish the computational universality of the system. Furthermore, we show that 2D quantum Ising Hamiltonians with tunable transverse and longitudinal fields can be efficient simulated by modulating Feshbach interaction strengths. We present a sample-efficient protocol to characterize engineered gates and Hamiltonian dynamics based on an improved classical shadow process tomography that requires minimal experimental controls. Our work opens up new opportunities to harness existing ultracold quantum gases for quantum information sciences

    The organic chemistry in the innermost, infalling envelope of the Class 0 protostar L483

    Full text link
    Context: The protostellar envelopes, outflow and large-scale chemistry of Class~0 and Class~I objects have been well-studied, but while previous works have hinted at or found a few Keplerian disks at the Class~0 stage, it remains to be seen if their presence in this early stage is the norm. Likewise, while complex organics have been detected toward some Class~0 objects, their distribution is unknown as they could reside in the hottest parts of the envelope, in the emerging disk itself or in other components of the protostellar system, such as shocked regions related to outflows. Aims: In this work, we aim to address two related issues regarding protostars: when rotationally supported disks form around deeply embedded protostars and where complex organic molecules reside in such objects. Methods: We observed the deeply embedded protostar, L483, using Atacama Large Millimeter/submillimeter Array (ALMA) Band~7 data from Cycles~1 and 3 with a high angular resolution down to ∼\sim~0.1′′^{\prime\prime} (20~au) scales. Results: We find that the kinematics of CS~J=7J=7--66 and H13^{13}CN~J=4J=4--33 are best fitted by the velocity profile from infall under conservation of angular momentum and not by a Keplerian profile. The spatial extents of the observed complex organics are consistent with an estimated ice sublimation radius of the envelope at ∼\sim~50~au, suggesting that the complex organics exist in the hot corino of L483. Conclusions: We find that L483 does not harbor a Keplerian disk down to at least 1515~au in radius. Instead, the innermost regions of L483 are undergoing a rotating collapse. This result highlights that some Class~0 objects contain only very small disks, or none at all, with the complex organic chemistry taking place on scales inside the hot corino of the envelope, in a region larger than the emerging disk.Comment: 19 pages, 11 figure

    Magnetic properties of two-phase superconductors

    Full text link
    We have recently proposed a theoretical model for superconductors endowed with two distinct superconducting phases, described by two scalar order parameters which condensate at different critical temperatures. On analyzing the magnetic behavior of such systems, we have found some observable differences with respect to the case of ordinary Ginzburg-Landau superconductors. In particular, at low temperature the London penetration length is strongly reduced and the Ginzburg-Landau parameter k becomes a function of temperature. By contrast, in the temperature region between the two phase transitions k is constant and the system is a type-I or a type-II superconductor depending on the ratio between the critical temperatures.Comment: revtex, 5 pages, 1 eps figur

    Modeling the magnetic field in the protostellar source NGC 1333 IRAS 4A

    Full text link
    Magnetic fields are believed to play a crucial role in the process of star formation. We compare high-angular resolution observations of the submillimeter polarized emission of NGC 1333 IRAS 4A, tracing the magnetic field around a low-mass protostar, with models of the collapse of magnetized molecular cloud cores. Assuming a uniform dust alignment efficiency, we computed the Stokes parameters and synthetic polarization maps from the model density and magnetic field distribution by integrations along the line-of-sight and convolution with the interferometric response. The synthetic maps are in good agreement with the data. The best-fitting models were obtained for a protostellar mass of 0.8 solar masses, of age 9e4 yr, formed in a cloud with an initial mass-to-flux ratio ~2 times the critical value. The magnetic field morphology in NGC 1333 IRAS 4A is consistent with the standard theoretical scenario for the formation of solar-type stars, where well-ordered, large-scale, rather than turbulent, magnetic fields control the evolution and collapse of the molecular cloud cores from which stars form.Comment: 4 pages, 5 figures. Accepted by Astronomy and Astrophysic

    Local probing of the field emission stability of vertically aligned multiwalled carbon nanotubes

    Full text link
    Metallic cantilever in high vacuum atomic force microscope has been used as anode for field emission experiments from densely packed vertically aligned multi-walled carbon nanotubes. The high spatial resolution provided by the scanning probe technique allowed precise setting of the tip-sample distance in the submicron region. The dimension of the probe (curvature radius below 50nm) allowed to measure current contribution from sample areas smaller than 1um^2. The study of long-term stability evidenced that on these small areas the field emission current remains stable (within 10% fluctuations) several hours (at least up to 72 hours) at current intensities between 10-5A and 10-8A. Improvement of the current stability has been observed after performing long-time Joule heating conditioning to completely remove possible adsorbates on the nanotubes.Comment: 15 pages, 7 figure

    Second discontinuity in the specific heat of two-phase superconductors

    Full text link
    The recently proposed theoretical model of superconductors endowed with two distinct superconducting phases and critical temperatures is further analyzed by introducing two distinct order parameters, described by two scalar fields which condensate at different temperatures. We find some deviations in basic thermodynamical quantities with respect to the Ginzburg-Landau one-phase superconductors. In particular, by contrast to the usual case where only one jump in specific heat takes place at the normal-superconductor transition temperature, we actually predict an additional discontinuity for C_V when passing from a superconducting phase to the other one.Comment: revtex, 4 pages, 1 figur
    • …
    corecore