4,754 research outputs found

    Online home appliance control using EEG-Based brain-computer interfaces

    Get PDF
    Brain???computer interfaces (BCIs) allow patients with paralysis to control external devices by mental commands. Recent advances in home automation and the Internet of things may extend the horizon of BCI applications into daily living environments at home. In this study, we developed an online BCI based on scalp electroencephalography (EEG) to control home appliances. The BCI users controlled TV channels, a digital door-lock system, and an electric light system in an unshielded environment. The BCI was designed to harness P300 andN200 components of event-related potentials (ERPs). On average, the BCI users could control TV channels with an accuracy of 83.0% ?? 17.9%, the digital door-lock with 78.7% ?? 16.2% accuracy, and the light with 80.0% ?? 15.6% accuracy, respectively. Our study demonstrates a feasibility to control multiple home appliances using EEG-based BCIs

    Adaptive laboratory evolution of a genome-reduced Escherichia coli.

    Get PDF
    Synthetic biology aims to design and construct bacterial genomes harboring the minimum number of genes required for self-replicable life. However, the genome-reduced bacteria often show impaired growth under laboratory conditions that cannot be understood based on the removed genes. The unexpected phenotypes highlight our limited understanding of bacterial genomes. Here, we deploy adaptive laboratory evolution (ALE) to re-optimize growth performance of a genome-reduced strain. The basis for suboptimal growth is the imbalanced metabolism that is rewired during ALE. The metabolic rewiring is globally orchestrated by mutations in rpoD altering promoter binding of RNA polymerase. Lastly, the evolved strain has no translational buffering capacity, enabling effective translation of abundant mRNAs. Multi-omic analysis of the evolved strain reveals transcriptome- and translatome-wide remodeling that orchestrate metabolism and growth. These results reveal that failure of prediction may not be associated with understanding individual genes, but rather from insufficient understanding of the strain's systems biology

    Nurses steps, distance traveled, and perceived physical demands in a three-shift schedule

    Get PDF
    Abstract Background The physical job demands of hospital nurses are known to be very high. Although many studies have measured the physical activities of nurses subjectively using questionnaires, it remains necessary to quantify and measure nurses physical activity at work using objective indicators. This study was conducted to address this gap in the literature by analyzing nurses physical activity using both objective measurements and subjective perceptions. The number of steps, distance traveled, and actual work hours were measured during work, and the influence of related factors was analyzed. Methods Using a cross-sectional design, survey and activity tracking data were collected from nurses who worked in three shifts in two tertiary hospitals located in the capital region of South Korea. The participants comprised 117 nurses working in four different units (medical ward, surgical ward, intensive care unit, emergency room), and data from 351 shifts were used in the final analysis. Between-group differences in the main variables were analyzed using the t-test, the Mann–Whitney test, analysis of variance, or the Kruskal–Wallis test, as appropriate. The relationships were examined through multiple linear regression analysis. Results The average number of steps and distance traveled were greatest for nurses working in the emergency room, followed by the intensive care unit, surgical ward, and medical ward (in descending order). Younger nurses and those with shorter unit experience tended to have the greatest number of steps and distance traveled. Conclusion Using activity trackers, this study derived physical activity measures such as number of steps and distance traveled, enabling an objective examination of physical activity during shifts. Nurses level of physical activity differed depending on the type of nursing unit, nurses age, and unit experience. These results suggest the need for support programs that are specific to the job demands of specific nursing units

    Two-gap and paramagnetic pair-breaking effects on upper critical field of SmFeAsO0.85_{0.85} and SmFeAsO0.8_{0.8}F0.2_{0.2} single crystals

    Full text link
    We investigated the temperature dependence of the upper critical field [Hc2(T)H_{c2}(T)] of fluorine-free SmFeAsO0.85_{0.85} and fluorine-doped SmFeAsO0.8_{0.8}F0.2_{0.2} single crystals by measuring the resistive transition in low static magnetic fields and in pulsed fields up to 60 T. Both crystals show that Hc2(T)H_{c2}(T)'s along the c axis [Hc2c(T)H_{c2}^c(T)] and in an abab-planar direction [Hc2ab(T)H_{c2}^{ab}(T)] exhibit a linear and a sublinear increase, respectively, with decreasing temperature below the superconducting transition. Hc2(T)H_{c2}(T)'s in both directions deviate from the conventional one-gap Werthamer-Helfand-Hohenberg theoretical prediction at low temperatures. A two-gap nature and the paramagnetic pair-breaking effect are shown to be responsible for the temperature-dependent behavior of Hc2cH_{c2}^c and Hc2abH_{c2}^{ab}, respectively.Comment: 21 pages, 8 figure

    First Confirmed Report of Powdery Mildew Caused by Erysiphe aquilegiae on Casuarina cunninghamiana in Argentina

    Get PDF
    Casuarina cunninghamiana Miq. (Fam. Casuarinaceae) is native to Australia and was introduced to Argentina and used as a windbreak, shade tree and for ornamental purposes. In autumn 2009, the potted seedlings in the nursery of La Plata University were found to be infected with a powdery mildew. Symptoms first appeared as thin white colonies, which subsequently developed into an abundant growth on the leaves and young stems. The damage caused by the powdery mildew infection has been observed every year after this initial infection and was again confirmed in April, 2011. There have been a few reports on the presence of powdery mildew on Casuarina spp. (Mantz et al., 2008; Farr and Rossman, 2011). In all the reports, the pathogen was cited to be Oidium sp. Thus, the aim of this work was to identify the causal agent of the powdery mildew observed on casuarina in Argentina

    An Active and Soft Hydrogel Actuator to Stimulate Live Cell Clusters by Self-folding

    Get PDF
    The hydrogels are widely used in various applications, and their successful uses depend on controlling the mechanical properties. In this study, we present an advanced strategy to develop hydrogel actuator designed to stimulate live cell clusters by self-folding. The hydrogel actuator consisting of two layers with different expansion ratios were fabricated to have various curvatures in self-folding. The expansion ratio of the hydrogel tuned with the molecular weight and concentration of gel-forming polymers, and temperature-sensitive molecules in a controlled manner. As a result, the hydrogel actuator could stimulate live cell clusters by compression and tension repeatedly, in response to temperature. The cell clusters were compressed in the 0.7-fold decreases of the radius of curvature with 1.0 mm in room temperature, as compared to that of 1.4 mm in 37 degrees C. Interestingly, the vascular endothelial growth factor (VEGF) and insulin-like growth factor-binding protein-2 (IGFBP-2) in MCF-7 tumor cells exposed by mechanical stimulation was expressed more than in those without stimulation. Overall, this new strategy to prepare the active and soft hydrogel actuator would be actively used in tissue engineering, drug delivery, and micro-scale actuators

    Chiroptical signal enhancement in quasi-null-polarization-detection geometry: Intrinsic limitations

    Get PDF
    Despite its unique capability of distinguishing molecular handedness, chiroptical spectroscopy suffers from the weak-signal problem, which has restricted more extensive applications. The quasi-null-polarization-detection (QNPD) method has been shown to be useful for enhancing the chiroptical signal. Here, the underlying enhancement mechanism in the QNPD method combined with a heterodyne detection scheme is elucidated. It is experimentally demonstrated that the optical rotatory dispersion signal can be amplified by a factor of similar to 400, which is the maximum enhancement effect achievable with our femtosecond laser setup. The upper limit of the QNPD enhancement effect of chiroptical measurements could, in practice, be limited by imperfection of the polarizer and finite detection sensitivity. However, we show that there exists an intrinsic limit in the enhancement with the QNPD method due to the weak but finite contribution from the homodyne chiroptical signal. This is experimentally verified by measuring the optical rotation of linearly polarized light with the QNPD scheme. We further provide discussions on the connection between this intrinsic limitation in the QNPD scheme for enhanced detection of weak chiroptical signals and those in optical enantioselectivity and Raman optical activity with a structured chiral field. We anticipate that the present work could be useful in further developing time-resolved nonlinear chiroptical spectroscopy.111Nsciescopu
    corecore