36,175 research outputs found

    Stress-energy Tensor Correlators in N-dim Hot Flat Spaces via the Generalized Zeta-Function Method

    Get PDF
    We calculate the expectation values of the stress-energy bitensor defined at two different spacetime points x,x′x, x' of a massless, minimally coupled scalar field with respect to a quantum state at finite temperature TT in a flat NN-dimensional spacetime by means of the generalized zeta-function method. These correlators, also known as the noise kernels, give the fluctuations of energy and momentum density of a quantum field which are essential for the investigation of the physical effects of negative energy density in certain spacetimes or quantum states. They also act as the sources of the Einstein-Langevin equations in stochastic gravity which one can solve for the dynamics of metric fluctuations as in spacetime foams. In terms of constitutions these correlators are one rung above (in the sense of the correlation -- BBGKY or Schwinger-Dyson -- hierarchies) the mean (vacuum and thermal expectation) values of the stress-energy tensor which drive the semiclassical Einstein equation in semiclassical gravity. The low and the high temperature expansions of these correlators are also given here: At low temperatures, the leading order temperature dependence goes like TNT^{N} while at high temperatures they have a T2T^{2} dependence with the subleading terms exponentially suppressed by e−Te^{-T}. We also discuss the singular behaviors of the correlators in the x′→xx'\rightarrow x coincident limit as was done before for massless conformal quantum fields.Comment: 23 pages, no figures. Invited contribution to a Special Issue of Journal of Physics A in honor of Prof. J. S. Dowke

    RTT relations, a modified braid equation and noncommutative planes

    Full text link
    With the known group relations for the elements (a,b,c,d)(a,b,c,d) of a quantum matrix TT as input a general solution of the RTTRTT relations is sought without imposing the Yang - Baxter constraint for RR or the braid equation for R^=PR\hat{R} = PR. For three biparametric deformatios, GL(p,q)(2),GL(g,h)(2)GL_{(p,q)}(2), GL_{(g,h)}(2) and GL(q,h)(1/1)GL_{(q,h)}(1/1), the standard,the nonstandard and the hybrid one respectively, RR or R^\hat{R} is found to depend, apart from the two parameters defining the deformation in question, on an extra free parameter KK,such that only for two values of KK, given explicitly for each case, one has the braid equation. Arbitray KK corresponds to a class (conserving the group relations independent of KK) of the MQYBE or modified quantum YB equations studied by Gerstenhaber, Giaquinto and Schak. Various properties of the triparametric R^(K;p,q)\hat{R}(K;p,q), R^(K;g,h)\hat{R}(K;g,h) and R^(K;q,h)\hat{R}(K;q,h) are studied. In the larger space of the modified braid equation (MBE) even R^(K;p,q)\hat{R}(K;p,q) can satisfy R^2=1\hat{R}^2 = 1 outside braid equation (BE) subspace. A generalized, KK- dependent, Hecke condition is satisfied by each 3-parameter R^\hat{R}. The role of KK in noncommutative geometries of the (K;p,q)(K;p,q),(K;g,h)(K;g,h) and (K;q,h)(K;q,h) deformed planes is studied. K is found to introduce a "soft symmetry breaking", preserving most interesting properties and leading to new interesting ones. Further aspects to be explored are indicated.Comment: Latex, 17 pages, minor change

    Time-division SQUID multiplexers with reduced sensitivity to external magnetic fields

    Full text link
    Time-division SQUID multiplexers are used in many applications that require exquisite control of systematic error. One potential source of systematic error is the pickup of external magnetic fields in the multiplexer. We present measurements of the field sensitivity figure of merit, effective area, for both the first stage and second stage SQUID amplifiers in three NIST SQUID multiplexer designs. These designs include a new variety with improved gradiometry that significantly reduces the effective area of both the first and second stage SQUID amplifiers.Comment: 4 pages, 7 figures. Submitted for publication in the IEEE Transactions on Applied Superconductivity, August 201

    Purification through Zeno-like Measurements

    Full text link
    A series of frequent measurements on a quantum system (Zeno-like measurements) is shown to result in the ``purification'' of another quantum system in interaction with the former. Even though the measurements are performed on the former system, their effect drives the latter into a pure state, irrespectively of its initial (mixed) state, provided certain conditions are satisfied.Comment: REVTeX4, 4 pages, 1 figure; to be published in Phys. Rev. Lett. (2003

    Neuromuscular control of wingbeat kinematics in Anna's hummingbirds (Calypte anna)

    Get PDF
    Hummingbirds can maintain the highest wingbeat frequencies of any flying vertebrate – a feat accomplished by the large pectoral muscles that power the wing strokes. An unusual feature of these muscles is that they are activated by one or a few spikes per cycle as revealed by electromyogram recordings (EMGs). The relatively simple nature of this activation pattern provides an opportunity to understand how motor units are recruited to modulate limb kinematics. Hummingbirds made to fly in low-density air responded by moderately increasing wingbeat frequency and substantially increasing the wing stroke amplitude as compared with flight in normal air. There was little change in the number of spikes per EMG burst in the pectoralis major muscle between flight in normal and low-density heliox (mean=1.4 spikes cycle^(–1)). However the spike amplitude, which we take to be an indication of the number of active motor units, increased in concert with the wing stroke amplitude, 1.7 times the value in air. We also challenged the hummingbirds using transient load lifting to elicit maximum burst performance. During maximum load lifting, both wing stroke amplitude and wingbeat frequency increased substantially above those values during hovering flight. The number of spikes per EMG burst increased to a mean of 3.3 per cycle, and the maximum spike amplitude increased to approximately 1.6 times those values during flight in heliox. These results suggest that hummingbirds recruit additional motor units (spatial recruitment) to regulate wing stroke amplitude but that temporal recruitment is also required to maintain maximum stroke amplitude at the highest wingbeat frequencies

    The phase-dependent Infrared brightness of the extrasolar planet upsilon Andromedae b

    Full text link
    The star upsilon Andromeda is orbited by three known planets, the innermost of which has an orbital period of 4.617 days and a mass at least 0.69 that of Jupiter. This planet is close enough to its host star that the radiation it absorbs overwhelms its internal heat losses. Here we present the 24 micron light curve of this system, obtained with the Spitzer Space Telescope. It shows a clear variation in phase with the orbital motion of the innermost planet. This is the first demonstration that such planets possess distinct hot substellar (day) and cold antistellar (night) faces.Comment: "Director's cut" of paper to appear in Science, 27 October, 200

    Color Reflection Invariance and Monopole Condensation in QCD

    Get PDF
    We review the quantum instability of the Savvidy-Nielsen-Olesen (SNO) vacuum of the one-loop effective action of SU(2) QCD, and point out a critical defect in the calculation of the functional determinant of the gluon loop in the SNO effective action. We prove that the gauge invariance, in particular the color reflection invariance, exclude the unstable tachyonic modes from the gluon loop integral. This guarantees the stability of the magnetic condensation in QCD.Comment: 28 pages, 3 figures, JHEP styl

    Quantum Mechanics on the h-deformed Quantum Plane

    Full text link
    We find the covariant deformed Heisenberg algebra and the Laplace-Beltrami operator on the extended hh-deformed quantum plane and solve the Schr\"odinger equations explicitly for some physical systems on the quantum plane. In the commutative limit the behaviour of a quantum particle on the quantum plane becomes that of the quantum particle on the Poincar\'e half-plane, a surface of constant negative Gaussian curvature. We show the bound state energy spectra for particles under specific potentials depend explicitly on the deformation parameter hh. Moreover, it is shown that bound states can survive on the quantum plane in a limiting case where bound states on the Poincar\'e half-plane disappear.Comment: 16pages, Latex2e, Abstract and section 4 have been revise

    Gauge Independent Trace Anomaly for Gravitons

    Full text link
    We show that the trace anomaly for gravitons calculated using the usual effective action formalism depends on the choice of gauge when the background spacetime is not a solution of the classical equation of motion, that is, when off-shell. We then use the gauge independent Vilkovisky-DeWitt effective action to restore gauge independence to the off-shell case. Additionally we explicitly evaluate trace anomalies for some N-sphere background spacetimes.Comment: 19 pages, additional references and title chang

    Magnetic Moments of Heavy Baryons

    Get PDF
    First non-trivial chiral corrections to the magnetic moments of triplet (T) and sextet (S^(*)) heavy baryons are calculated using Heavy Hadron Chiral Perturbation Theory. Since magnetic moments of the T-hadrons vanish in the limit of infinite heavy quark mass (m_Q->infinity), these corrections occur at order O(1/(m_Q \Lambda_\chi^2)) for T-baryons while for S^(*)-baryons they are of order O(1/\Lambda_\chi^2). The renormalization of the chiral loops is discussed and relations among the magnetic moments of different hadrons are provided. Previous results for T-baryons are revised.Comment: 11 Latex pages, 2 figures, to be published in Phys.Rev.
    • …
    corecore