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Abstract
We calculate the expectation values of the stress–energy bitensor defined at two
different spacetime points x, x′ of a massless, minimally coupled scalar field
with respect to a quantum state at finite temperature T in a flat N-dimensional
spacetime by means of the generalized zeta-function method. These correlators,
also known as the noise kernels, give the fluctuations of energy and momentum
density of a quantum field which are essential for the investigation of the
physical effects of negative energy density in certain spacetimes or quantum
states. They also act as the sources of the Einstein–Langevin equations in
stochastic gravity which one can solve for the dynamics of metric fluctuations
as in spacetime foams. In terms of constitutions these correlators are one
rung above (in the sense of the correlation—BBGKY or Schwinger-Dyson—
hierarchies) the mean (vacuum and thermal expectation) values of the stress–
energy tensor which drive the semiclassical Einstein equation in semiclassical
gravity. The low- and the high-temperature expansions of these correlators are
also given here: at low temperatures, the leading order temperature dependence
goes like T N while at high temperatures they have a T 2 dependence with the
subleading terms exponentially suppressed by e−T . We also discuss the singular
behavior of the correlators in the x′ → x coincident limit as was done before
for massless conformal quantum fields.
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PACS numbers: 04.62.+v, 05.40.−a, 11.10.Kk

1751-8113/12/374013+15$33.00 © 2012 IOP Publishing Ltd Printed in the UK & the USA 1

http://dx.doi.org/10.1088/1751-8113/45/37/374013
mailto:htcho@mail.tku.edu.tw
mailto:blhu@umd.edu
http://stacks.iop.org/JPhysA/45/374013


J. Phys. A: Math. Theor. 45 (2012) 374013 H T Cho and B L Hu

1. Introduction

In this paper, we present a calculation of the stress tensor correlators, also known as the
noise kernels, of a massless, minimally coupled scalar field at a finite temperature T in a
flat N-dimensional spacetime by means of the generalized zeta-function method. The stress
tensor correlator is the expectation value of the stress–energy bitensor defined at two separate
spacetime points. The zeta-function method was first introduced by Dowker and Critchley [1]
and Hawking [2] (see also [3]) and successfully applied to the regularization of ultraviolet
divergences in stress tensors of quantum fields in curved spacetimes with Euclidean sections,
e.g., static black holes and (anti-)de Sitter (AdS) space. It was generalized by Phillips and
Hu [4] (see also [5]) for the calculation of stress–energy correlators. In an earlier paper [6],
we mentioned three classes of physical problems of current interest which necessitate the
knowledge of such quantities and motivated us to undertake this task for AdS spaces. Here, we
also mention three classes of problems as motivation for our present endeavor of calculating the
stress–energy correlators for finite-temperature quantum fields in curved spacetimes. Common
to both endeavors foremost is the following.

(A) The semiclassical stochastic gravity program [7]. A theoretical framework that was
established in the 1990s as a natural extension of the semiclassical gravity (SCG) theory of
the 1980s [8], for including the effects of fluctuations in the quantum matter field through
the Einstein–Langevin equation (ELEq), which governs the behavior of the induced metric
fluctuations [9]. While SCG goes beyond the quantum field theory in curved spacetime
(QFTCST) of the 1970s [10] (viewed as the test-field approximation of SCG on a fixed
background spacetime), in which the backreaction of the quantum matter field on the
dynamics of the spacetime is incorporated through the expectation value of the stress–
energy tensor as the source of the semiclassical Einstein (SCEq) equation, stochastic
gravity goes beyond SCG in which it includes also the backreaction of the fluctuations
of the stress–energy tensor, measured by the expectation values of the stress–energy
bitensor, also known as the noise kernel, which govern the behavior of the induced metric
fluctuations.

(B) Black hole fluctuations and backreaction. Owing to the existence of an Euclidean section in
static (e.g., Schwarzschild) black hole spacetimes, quantum field effects can be obtained
via thermal field methods. For example, the Hawking effect can be derived with the
use of the Euclidean Green function [11] whose periodicity corresponds to the inverse
Hawking temperature. Fluctuations and backreaction of the stress–energy tensor near the
black hole event horizon is an important issue [12], the investigation of this problem
for Schwarzschild black holes requires knowledge of the thermal stress tensor correlator,
which is the expectation value of the stress–energy bitensor with respect to the Hartle–
Hawking state. Thermal stress tensor correlator calculation in hot flat space is the logical
first step toward this goal, as was the motivation in the earlier work of Phillips and Hu
[13]. In that paper, the authors use the Gaussian approximation [14] for the Green function
for such quantum fields to evaluate the noise kernel in two optical metrics: hot flat space
and the optical-Schwarzschild spacetime. The optical metric for an ultrastatic spacetime
has the product form ds2 = gab dxa dxb = dτ 2 + gi j dxi dx j. In the Euclidean sector, we
can allow the imaginary τ time to possess a periodicity of 2π/κ = β = 1/T , with T being
the temperature, to connect with thermal field theories. (For a black hole, κ is the surface
gravity.) For massless conformally coupled quantum fields in hot flat space, the Gaussian
Green function is exact. For optical Schwarzschild, the Gaussian Green function is known
to be a fairly good approximation for calculating the stress tensor which involves second
covariant derivatives of the Green function. The noise kernels involve up to four covariant
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derivatives of the Green function [15]. The Schwarzschild metric is obtained from the
optical Schwarzschild by a conformal transformation.

This earlier work is followed by a recent paper [16] wherein the authors, instead of
seeking the coincident limits of the noise kernel, calculated the point-separated expression
(in both time-like and space-like directions) necessary to solve the equations of stochastic
SCG, by the same Gaussian approximation for the Wightman function for conformally
invariant fields. These authors have computed all components of the noise kernel exactly
for hot flat space and several components for the Schwarzschild spacetime. They showed
that the noise kernel for the conformally invariant field has a simple scaling behavior under
conformal transformations which enables them to obtain the results for Schwarzschild
spacetime from that for the optical-Schwarzschild metric.

(C) Negative energy density and fluctuations. Apart from applications to early universe and
black hole physics, closer to home, the stress–energy correlators are directly relevant to the
fluctuations of vacuum energy density, especially the existence of negative energy density
as in flat space with boundaries (such as the Casimir energy) and for non-classical states
(such as two-mode squeezed states). This issue was raised by Kuo and Ford [17], furthered
by Wu and Ford [18] and pursued by Phillips and Hu [4, 19], where the fluctuations in
energy density are shown to be comparable to its mean value for several classes of
spacetimes (e.g., Einstein universe) and states (e.g., Casimir). Many related problems
such as the quantum interest principle [20] bear on foundational issues of quantum field
theory and spacetime structure. With generalization to finite temperature one can ask how
this quantum vacuum behavior is altered by thermal fluctuations. Results for hot flat space
were obtained in [13] for conformally invariant quantum fields. Our present results for
massless minimally coupled fields in arbitrary dimensions complement and further these
earlier studies.

The organization of this paper is as follows. In section 2, we introduce the generalized
zeta-function method. In section 3, we use this method to calculate the stress–energy tensor
correlator for a finite-temperature quantum field in flat N-dimensional space. In section 4, we
give the expressions for high- and low-temperature expansions showing which components in
the bitensor are dominant and how temperature and dimensionality alter this behavior. We also
discuss the singular behavior of the correlators in the x′ → x coincident limit. We conclude
with some remarks in section 5. The detailed expressions are collected in appendices A, B and
C. Our conventions are the same as in our earlier papers [6].

2. Generalized zeta-function method

In this section, we first introduce the generalized zeta-function method of Phillips and Hu [4]
(see also [5]) based on the original methods of Dowker and Critchley [1] and Hawking [2].
This method has recently been used to consider the case of the stress–energy correlations in
AdS spaces [6]. Here, we apply it to calculate such correlations in hot flat spaces.

To be general, we start by considering a massive m scalar field φ coupled to an
N-dimensional Euclideanized space (with the contravariant metric gμν (x), determinant g and
scalar curvature R) with the coupling constant ξ described by the action

S[φ] = 1

2

∫
dNx

√
g(x)φ(x)Hφ(x), (1)

where H is the quadratic operator

H = −� + m2 + ξR, (2)
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and R is the scalar curvature. The effective action defined by W = lnZ is related to the
generating functional Z by

Z =
∫

Dφ e−S[φ]. (3)

The expectation value of the stress–energy tensor can be obtained by taking the functional
derivative of the effective action

〈Tμν〉 = − 2√
g(x)

δW

δgμν (x)
. (4)

This formal expression is divergent at the coincident limit and some procedure of regularization
needs to be implemented. Here, we adopt the ζ -function regularization scheme of [1, 2].

The ζ -function of an operator H is defined as

ζH (s) =
∑

n

(
μ

λn

)s

= Tr
( μ

H

)s
, (5)

where λn are the eigenvalues of H and μ represents the renormalization scale. The ζ -function
regularized effective action of the operator H is

WR = 1

2

dζ

ds

∣∣∣∣
s→0

. (6)

Using the proper-time method of Dowker and Critchley [1], one can write the ζ -function as

ζH (s) = μs

�(s)

∫ ∞

0
dt ts−1Tr e−tH (7)

WR = 1

2

d

ds

[
μs

�(s)

∫ ∞

0
dt ts−1Tr e−tH

]
s→0

. (8)

Taking the first variation of the ζ -function,

δζH = − μs

�(s)

∫ ∞

0
dt tsTr(δH e−tH )

= − μs

�(s)

∫ ∞

0
dt ts

∑
n

e−tλn〈n|δH|n〉, (9)

we obtain the regularized expectation value of the stress–energy tensor given by

〈Tμν (x)〉 = 1

2

d

ds

[
− μs

�(s)

∫ ∞

0
dt ts

∑
n

e−tλn

(
− 2√

g(x)
〈n| δH

δgμν (x)
|n〉

)]
s→0

= −1

2

d

ds

{
μs

�(s)

∫ ∞

0
dt ts

∑
n

e−tλn Tμν[φn(x), φ∗
n (x)]

}
s→0

, (10)

where

Tμν[φn(x), φ∗
n′ (x)] ≡ − 2√

g(x)
〈n′| δH

δgμν (x)
|n〉

= − 2√
g(x)

∫
dNx′√g(x′)φ∗

n′ (x′)
[

δH

δgμν (x)
φn(x

′)
]
. (11)

Here, φn(x) are the normalized eigenfunctions of the operator H corresponding to the
eigenvalues λn:

Hφn = λnφn. (12)
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With the form of H given by (2), we have

Tμν

[
φn(x), φ∗

n′ (x)
] = −(∂μφ∗

n′∂νφn + ∂νφ
∗
n′∂μφn) + gμν (g

αβ∂αφ∗
n′∂βφn + φ∗

n′ � φn)

− 2ξ [gμν �(φ∗
n′φn) − ∇μ∇ν (φ

∗
n′φn) + Rμνφ

∗
n′φn]. (13)

Using the Schwinger method [21], Phillips and Hu [4] generalized the ζ -function method
for the consideration of the stress–energy correlators. The second variation of the ζ -function
can be written as

δ2δ1ζH = μs

2�(s)

∫ ∞

0
du

∫ ∞

0
dv(u + v)s(uv)ν

× {Tr[(δ1H) e−uH (δ2H) e−vH ] + Tr[(δ2H) e−uH (δ1H) e−vH ]} (14)

and

�T 2
μνα′β ′ (x, x′) ≡ 〈Tμν (x)Tα′β ′ (x′)〉 − 〈Tμν (x)〉〈Tα′β ′ (x′)〉

= 4√
g(x)g(x′)

δ2W

δgμν (x)δgα′β ′
(x′)

= 1

2

d

ds

{
μs

�(s)

∫ ∞

0
du

∫ ∞

0
dv(u + v)s(uv)ν

∑
n,n′

e−uλn−vλn′

× Tμν

[
φn(x), φ∗

n′ (x)
]

Tα′β ′
[
φn′ (x′), φ∗

n (x′)
]}

s,ν→0

. (15)

Note that in this prescription an additional regularization factor (uv)ν has been introduced. This
is because the authors of [4] were interested in the fluctuations of the stress–energy tensor, that
is, in the coincident limit of �T 2

μνα′β ′ (x, x′) where under this limit further divergences occur
which call for an additional regularization factor. (See also [5].) However, our present purpose
is focused on getting the correlators with two points separated, i.e. in the non-coincident case.
Hence, apart from the fact that the expression in equation (15) is more symmetric with this
factor, the keeping of this factor above is actually a matter of convenience. Here, we can first
take the s → 0 limit without spoiling the regularization and the expression in equation (15)
becomes

�T 2
μνα′β ′ (x, x′) = 1

2

∫ ∞

0
du

∫ ∞

0
dv(uv)ν

∑
n,n′

e−uλn−vλn′

× Tμν[φn(x), φ∗
n′ (x)]Tα′β ′[φn′ (x′), φ∗

n (x′)]
∣∣∣∣
ν→0

. (16)

We shall see from the following calculations that with this expression the integrations over u
and v effectively separate. The calculations are therefore simplified considerably.

3. Stress–energy correlators in hot flat spaces

We now apply this generalized ζ -function method to calculate the stress–energy correlators of
massless, minimally coupled quantum fields in hot flat spaces. The N-dimensional Euclidean
flat space metric has the form

ds2 = dτ 2 + d�x · d�x, (17)

where τ has the periodicity β = 1/T . The operator H is just −� and the corresponding
normalized eigenfunctions are

φn�k(τ,�x) = 1

(2π)(N−1)/2
√

β
eiωnτ+i�k·�x, (18)

5
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where ωn = 2πn/β for n = 0,±1,±2, . . ., and∫ β

0
dτ

∫
dN−1xφ∗

n′�k′ (τ,�x)φn�k(τ,�x) = δnn′ δ(�k −�k′). (19)

From the tensorial structure of the �T 2
μνα′β ′ (x, x′), one can define the scalar coefficient

functions as follows [22, 23, 6]:

�T 2
0000(x, x′) = C11 (20)

�T 2
000i(x, x′) = C21(�x − �x)i (21)

�T 2
00i j(x, x′) = C31δi j + C32(�x − �x ′)i(�x − �x ′) j (22)

�T 2
0i0 j(x, x′) = C41δi j + C42(�x − �x ′)i(�x − �x ′) j (23)

�T 2
0i jk(x, x′) = C51(�x − �x ′)iδ jk + C52[δi j(�x − �x ′)k + δik(�x − �x ′) j]

+C53(�x − �x ′)i(�x − �x ′) j(�x − �x ′)k (24)

�Ti jkl (x, x′) = C61δi jδkl + C62(δikδ jl + δilδ jk)

+C63[δi j(�x − �x ′)k(�x − �x ′)l + δkl(�x − �x ′)i(�x − �x ′) j]

+C64[δik(�x − �x ′) j(�x − �x ′)l + δil(�x − �x ′) j(�x − �x ′)k

+δ jk(�x − �x ′)i(�x − �x ′)l + δ jl(�x − �x ′)i(�x − �x ′)k]

+C65(�x − �x ′)i(�x − �x ′) j(�x − �x ′)k(�x − �x ′)l (25)

where, owing to the homogeneity of the space, the coefficients Cab are functions of τ − τ ′ and
|�x − �x ′| only.

The components of Tμν[φn�k(τ,�x), φ∗
n′�k′ (τ

′,�x ′)] in hot flat space are

T00[φn�k(τ,�x), φ∗
n′�k′ (τ

′,�x ′)] = [−ωn (ωn + ωn′ ) −�k · (�k −�k′)]φn�k(τ,�x), φ∗
n′�k′ (τ

′,�x ′) (26)

T0i[φn�k(τ,�x), φ∗
n′�k′ (τ

′,�x ′)] = [−ωnk′
i − ωn′ki]φn�k(τ,�x), φ∗

n′�k′ (τ
′,�x ′) (27)

Ti j[φn�k(τ,�x), φ∗
n′�k′ (τ

′,�x ′)] = [−kik
′
j − k′

ik j − δi j(ωn(ωn − ωn′ ) +�k · (�k −�k′))]

×φn�k(τ,�x), φ∗
n′�k′ (τ

′,�x ′). (28)

The coefficients Cab can be expressed in terms of the function f (α),

f (α) =
∞∑

n=−∞

∫ ∞

0
duu−α e−uω2

n e−(�x−�x ′)2/4u eiωn(τ−τ ′), (29)

and its τ derivatives. These expressions can be found in appendix A.

4. Low- and high-temperature expansions of the correlators

To develop the low- and high-temperature expansions of the correlators, we look at the
corresponding behavior of the function f (α) defined in equation (29). In fact, for the low-
temperature regime, a Poisson summation formula has to be used to obtain the appropriate
form of f (α). In these expansions, we shall see that the dependence of the correlators on
the temperature is quite different in the low- and the high-temperature regimes. We shall also
discuss the corresponding singular behavior of the correlators in the x → x′ coincident limit.

6
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4.1. High-temperature expansion

First, for high temperature or small β, ωn = 2πn/β is always large except for n = 0. Hence,
we need to treat the n = 0 term separately as follows:

f (α) =
∫ ∞

0
duu−α e−(�x−�x ′)2/4u + 2

∞∑
n=1

cos[ωn(τ − τ ′)]
∫ ∞

0
duu−α euω2

n e(�x−�x ′)2/4u

= 4α−1�(α − 1)[(�x − �x ′)2]1−α +
∞∑

n=1

2α+1[(�x − �x ′)2]1−α

×
(

2πn|�x − �x ′|
β

)α−1

cos

(
2πn(τ − τ ′)

β

)
Kα−1

(
2πn|�x − �x ′|

β

)
. (30)

Using the asymptotic expansion of the modified Bessel function Kν (z) for large z, we can
further expand f (α) as follows:

f (α) = 4α−1�(α − 1)[(�x − �x ′)2]1−α

{
1 + 2πα−1

�(α − 1)
e−2π |�x−�x ′|/β

( |�x − �x ′|
β

)α− 3
2

× cos

(
2π(τ−τ ′)

β

)[
1 +

(
α − 1

2

) (
α − 3

2

)
4π

(
β

|�x − �x ′|
)

+ · · ·
]

+ · · ·
}

. (31)

This asymptotic series of f (α) can now be used to develop the high-temperature expansions of
the correlator components. They are listed in appendix B. From equations (B.1) to (B.6), we see
that the density–density correlator �T 2

0000(x, x′), the density–pressure correlators �T 2
00i j(x, x′)

and the pressure–pressure correlators �T 2
i jkl (x, x′) are of the order of 1/β2 or T 2, while

�T 2
000i(x, x′), �T 2

0i0 j(x, x′) and �T 2
0i jk(x, x′) are suppressed by e−T .

Next, we investigate the singular behavior of the correlators in the x′ → x coincident
limit. Note that for the high-temperature expansion to work, we must have |�x − �x ′| and
|τ − τ ′| both larger than β. Hence, here we take x → x′ with β also approaching zero
while keeping both |�x − �x ′| and |τ − τ ′| > β. Now since the space is homogeneous
and isotropic, we can average over the directions in this limit. This amounts to replacing
(�x − �x ′)i(�x − �x ′) j with δi j(�x − �x ′)2/(N − 1) and (�x − �x ′)i(�x − �x ′) j(�x − �x ′)k(�x − �x ′)l with
(δi jδkl + δikδ jl + δilδ jk)(�x − �x ′)4/(N2 − 1). In this way, the correlators are

�T 2
0000(x, x′) ∼ (N − 1)(N − 2)�2[(N − 1)/2]

8πN−1|�x − �x ′|2N−2β2
(32)

�T 2
00i j(x, x′) ∼ (N − 2)(N − 3)�2[(N − 1)/2]δi j

8πN−1|�x − �x ′|2N−2β2
(33)

�T 2
i jkl (x, x′) ∼ (N3 − 6N2 + 7N + 6)�2[(N − 1)/2]

8(N + 1)πN−1|�x − �x ′|2N−2β2

×
[
δi jδkl + 2(N − 3)

N3 − 6N2 + 7N + 6

(
δikδ jl + δilδ jk

)]
. (34)

For example, for N = 4, we have

�T 2
0000(x, x′) ∼ 3

16π2

(
1

|�x − �x ′|6β2

)
(35)

�T 2
00i j(x, x′) ∼ 1

16π2

(
1

|�x − �x ′|6β2

)
δi j (36)

7



J. Phys. A: Math. Theor. 45 (2012) 374013 H T Cho and B L Hu

�T 2
i jkl (x, x′) ∼ 1

80π2

(
1

|�x − �x ′|6β2

)
(δi jδkl + δikδ jl + δilδ jk). (37)

The density–density fluctuation is larger than the other fluctuations. However, when N is large,
all these three fluctuations have the same N2�2[(N − 1)/2] dependence.

4.2. Low-temperature expansion

To find the low-temperature expansion for the correlators we again consider the function f (α).
The definition in equation (29) is not suitable for this purpose. An appropriate form can be
obtained using the Poisson summation formula (see, for example, [24]):

∞∑
n=−∞

g(nβ) =
∞∑

n=−∞

√
2π

β
g̃

(
2πn

β

)
, (38)

where g̃(k) is the Fourier transform of g(x):

g̃(k) =
∫ ∞

−∞

dx√
2π

e−ikxg(x). (39)

Taking g(x) = e−4π2ux2/β4+i2π(τ−τ ′ )x/β2
, we have

∞∑
n=−∞

e−uω2
n+iωn(τ−τ ′) =

∞∑
n=−∞

β√
4πu

e−(τ−τ ′−nβ)2/4u (40)

and the function f (α) becomes

f (α) =
∞∑

n=−∞

22α−1�
(
α − 1

2

)
β√

4π
[(�x − �x ′)2 + (τ − τ ′ − nβ)2]−α+ 1

2 . (41)

In this form, one can expand in powers of 1/β for large β or low temperature:

f (α) = 22α−1�
(
α − 1

2

)
β√

4π
[(�x − �x ′)2 + (τ − τ ′)2]−α+ 1

2 + 22α−1�
(
α − 1

2

)
ζ (2α − 1)√

πβ2α−2

×
{

1 − (2α − 1)ζ (2α + 1)

2ζ (2α − 1)β2

[
(�x − �x ′)2 − 2α(τ − τ ′)2] + · · ·

}
. (42)

Using this expansion we can develop the low-temperature expansions of the correlators. They
are listed in appendix C. We make two observations. (1) From equations (C.3) to (C.8), we see
that when β → ∞ or T → 0, the correlators reduce to the ones in a RN space. One can check
that the values we obtain here are the same as the ones in [6]. (2) The leading temperature
dependences of the correlators are all 1/βN or T N .

To investigate the singular behavior of the correlators in the coincident limit in this low-
temperature regime, we first take the τ ′ → τ limit. In this limit �T 2

000i and �T 2
0i jk vanish. We

then average over the directions in the other correlators giving

�T 2
0000(x, x′) ∼ N(N − 1)�2(N/2)

8πN |�x − �x ′|2N

[
1 − 4ζ (N)

N − 1

( |�x − �x ′|
β

)N
]

(43)

�T 2
00i j(x, x′) ∼ (N3 − 4N2 + N + 4)�2(N/2)δi j

8(N − 1)πN |�x − �x ′|2N

[
1 + 4(N2 − 3N + 4)ζ (N)

(N3 − 4N2 + N + 4)

( |�x − �x ′|
β

)N
]

(44)

�T 2
0i0 j(x, x′) ∼ − �2(N/2)δi j

4(N − 1)πN |�x − �x ′|2N

[
1 − 4(N − 1)ζ (N)

( |�x − �x ′|
β

)N
]

(45)

8
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�T 2
i jkl (x, x′) ∼ (N4 − 5N3 + 3N2 + 9N + 4)�2(N/2)(δi jδkl )

8(N2 − 1)πN |�x − �x ′|2N

×
[

1 − 4(N − 1)(N2 + 7N − 4)ζ (N)

(N4 − 5N3 + 3N2 + 9N + 4)

( |�x − �x ′|
β

)N
]

+ (N2−2N−1)�2(N/2)(δikδ jl + δilδ jk)

4(N2 − 1)πN |�x − �x ′|2N

[
1 − 4(N − 1)ζ (N)

N2 − 2N − 1

( |�x − �x ′|
β

)N
]

.

(46)

From the signs of the temperature-dependent terms, we see that the finite-temperature effect
tends to increase the density–pressure fluctuation, while it tends to decrease all the other
fluctuations.

To see their relative magnitudes we examine the four-dimensional case. Setting N = 4 in
the above we obtain

�T 2
0000(x, x′) ∼ 3

2π4|�x − �x ′|8
[

1 − 2π4

135

( |�x − �x ′|
β

)4
]

(47)

�T 2
00i j(x, x′) ∼ δi j

3π4|�x − �x ′|8
[

1 + 2π4

45

( |�x − �x ′|
β

)4
]

(48)

�T 2
0i0 j(x, x′) ∼ − δi j

12π4|�x − �x ′|8
[

1 − 2π4

15

( |�x − �x ′|
β

)4
]

(49)

�T 2
i jkl (x, x′) ∼ δi jδkl

5π4|�x − �x ′|8
[

1 − 2π4

9

( |�x − �x ′|
β

)4
]

+7(δikδ jl + δilδ jk)

60π4|�x − �x ′|8
[

1 − 2π4

105

( |�x − �x ′|
β

)4
]

. (50)

Here, the finite-temperature effect is larger for the pressure–pressure fluctuation than the others.
On the other hand, for large values N, the current–current fluctuation goes like 4Nζ (N), while
the other fluctuations all go like 4ζ (N)/N.

5. Concluding remarks

In this paper, we have calculated the stress–energy tensor correlators of a massless, minimally
coupled scalar quantum field in hot N-dimensional flat spaces. With the help of the Poisson
summation formula we are able to develop low temperature as well as high-temperature
expansions of these correlators. Low- and high-temperature regimes are determined by whether
T is smaller or larger than |�x−�x ′| and |τ −τ ′|, the only dimensional parameter in the problem.
The results are collected in the appendices. The expressions there are a bit lengthy. First, a
simple check can be done by comparing with the results in [6] where the correlators of a
generally coupled scalar in N-dimensional flat spaces are given. The temperature-independent
terms in appendix C agree with that in [6], when the coupling there is set to zero. Moreover,
the correlators should be conserved. This is indeed the case as one can check, for example,
that ∂0�T 2

0000 + ∂ i�T 2
000i vanishes for both the low- and high-temperature expansions. In

two dimensions, the massless minimally coupled scalar considered here is conformal so the
correlators should be traceless. This can be shown in the expansions such that, for example,

9
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�T 2
0000 +�T 2

00ii vanishes when N is set to 2. The expressions in the low- and high-temperature
regimes are also related to the phenomenon of dimensional reduction. The leading behavior
of the spatial components of the correlators in the high-temperature limit is equal to β−2 times
the zero temperature correlators with one less dimension.

From the low- and high-temperature expansions, we see that the correlators have rather
different behavior in these regimes. For low temperature, all the correlators have finite-
temperature corrections of the order T N . However, for high temperature, density–density,
density–pressure and pressure–pressure correlators are of the order T 2, while the other
correlators are suppressed by e−T . We have also investigated the quantum fluctuations of
the stress–energy tensor by considering the singular behavior of the correlators under the
x′ → x coincident limit. Here, we first take τ ′ → τ and then average over the directions. In
the low-temperature regime, we see that the finite-temperature contributions tend to decrease
the magnitude of fluctuations because the vacuum and the thermal fluctuations are of opposite
signs, except for �T 2

00i j. On the other hand, in the high-temperature regime, all the unsuppressed
correlators have similar magnitude, which go like N2�2[(N − 1)/2] for large N. Note that in
this limit, both β = 1/T and |�x − �x ′| are small but |�x − �x ′| > β is always assumed in our
approximation.

It would be interesting to see how this behavior would change with the introduction of
another dimensional parameter. For example, we can consider massive scalars or background
spacetime with non-zero curvature, like in [6]. We do not expect the high-temperature behavior
to change. However, the low-temperature behavior might be altered. This makes careful
consideration of finite yet small temperature corrections to the established results involving
quantum vacuum quantities, such as negative energy density, and theorems derived therefrom,
such as the quantum interest principle, worthwhile. We hope to address these foundational
issues of importance and report our findings certainly on, if not before, the occasion of
Professor Dowker’s 80th birthday celebration.

Here’s wishing you, Stuart, many happy returns!
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Appendix A. Coefficient functions

The coefficient functions of the stress–energy correlators in equations (20)–(25) with
ν = (N − 1)/2 are as follows:

C11(τ − τ ′, |�x − �x ′|) = 1

2(4π)N−1β2

{
2∂2

τ f (ν)∂2
τ f (ν) − 2∂3

τ f (ν)∂τ f (ν)

+ (N − 1)
[
∂τ f (ν)∂τ f (ν + 1) − f (ν + 1)∂2

τ f (ν)
]

+ N(N − 1)

4
f (ν + 1) f (ν + 1)

− (�x − �x ′)2

2

[
∂τ f (ν)∂τ f (ν + 2) − f (ν + 2)∂2

τ f (ν)

10
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∂τ f (ν + 1)∂τ f (ν + 1) − f (ν + 1)∂2
τ f (ν + 1) + 2N + 1

2
f (ν + 1) f (ν + 2)

]

+ (�x − �x ′)4

8
[ f (ν + 2) f (ν + 2) + f (ν + 1) f (ν + 3)]

}
(A.1)

C21(τ − τ ′, |�x − �x ′|) = 1

2(4π)N−1β2

{
1

2
∂2
τ f (ν + 1)∂τ f (ν) − 1

2
∂τ f (ν + 1)∂2

τ f (ν)

+1

2
f (ν + 1)∂3

τ f (ν) − 1

2
∂2
τ f (ν)∂τ f (ν + 1)

−N + 1

4
[ f (ν + 1)∂τ f (ν + 1) + f (ν + 2)∂τ f (ν)]

+ (�x − �x ′)2

4

[
f (ν + 2)∂τ f (ν + 1)

+1

2
f (ν + 1)∂τ f (ν + 2) + 1

2
f (ν + 3)∂τ f (ν)

]}
(A.2)

C31(τ − τ ′, |�x − �x ′|) = 1

2(4π)N−1β2
{N2 − N − 2

4
f (ν + 1) f (ν + 1)

− (N − 1) f (ν + 1)∂2
τ f (ν)

+ (�x − �x ′)2

4
[2 f (ν + 2)∂2

τ f (ν) + 2 f (ν + 1)∂2
τ f (ν + 1)

−(2N + 1) f (ν + 2) f (ν + 1)]

+ (�x − �x ′)4

8
[ f (ν + 3) f (ν + 1) + f (ν + 2) f (ν + 2)]} (A.3)

C32(τ − τ ′, |�x − �x ′|) = 1

2(4π)N−1β2

{
1

2
∂τ f (ν + 1)∂τ f (ν + 1) − 1

2
f (ν + 1)∂2

τ f (ν + 1)

+N + 3

4
f (ν + 2) f (ν + 1)

− (�x − �x ′)2

8
[ f (ν + 3) f (ν + 1) + f (ν + 2) f (ν + 2)]

}
(A.4)

C41(τ − τ ′, |�x − �x ′|) = 1

2(4π)N−1β2

{− f (ν + 1)∂2
τ f (ν)

}
(A.5)

C42(τ − τ ′, |�x − �x ′|) = 1

2(4π)N−1β2

{
1

2
∂τ f (ν + 1)∂τ f (ν + 1) + 1

2
f (ν + 2)∂2

τ f (ν)

}
(A.6)

C51(τ − τ ′, |�x − �x ′|) = 1

2(4π)N−1β2

{
∂τ f (ν + 1)∂2

τ f (ν) + 1

2
∂τ f (ν)∂2

τ f (ν + 1)

+ 1

2
f (ν + 1)∂3

τ f (ν) − N + 1

4
f (ν + 2)∂τ f (ν)

−N + 1

4
f (ν + 1)∂τ f (ν + 1)

+ (�x − �x ′)2

4

[
f (ν + 2)∂τ f (ν + 1) + 1

2
f (ν + 3)∂τ f (ν)

+ 1

2
f (ν + 1)∂τ f (ν + 2)

]}
(A.7)

C52(τ − τ ′, |�x − �x ′|) = 1

2(4π)N−1β2

{
1

2
f (ν + 1)∂τ f (ν + 1)

}
(A.8)

11



J. Phys. A: Math. Theor. 45 (2012) 374013 H T Cho and B L Hu

C53(τ − τ ′, |�x − �x ′|) = 1

2(4π)N−1β2

{
−1

2
f (ν + 2)∂τ f (ν + 1)

}
(A.9)

C61(τ − τ ′, |�x − �x ′|) = 1

2(4π)N−1β2

{
2∂τ f (ν)∂3

τ f (ν) + 2∂2
τ f (ν)∂2

τ f (ν)

−(N − 1) f (ν + 1)∂2
τ f (ν) − (N − 1)∂τ f (ν)∂τ f (ν + 1)

+ N2 − N − 4

4
f (ν + 1) f (ν + 1)

+ (�x − �x ′)2

2

[
f (ν + 1)∂2

τ f (ν + 1) + ∂τ f (ν + 1)∂τ f (ν + 1)

+ f (ν + 2)∂2
τ f (ν) + ∂τ f (ν)∂τ f (ν + 2) − 2N + 1

2
f (ν + 2) f (ν + 1)

]

+ (�x − �x ′)4

8
[ f (ν + 2) f (ν + 2) + f (ν + 3) f (ν + 1)]

}
(A.10)

C62(τ − τ ′, |�x − �x ′|) = 1

2(4π)N−1β2

{
1

2
f (ν + 1) f (ν + 1)

}
(A.11)

C63(τ − τ ′, |�x − �x ′|) = 1

2(4π)N−1β2

{
−1

2
f (ν + 1)∂2

τ f (ν + 1)

−1

2
∂τ f (ν + 1)∂τ f (ν + 1) + N + 3

4
f (ν + 2) f (ν + 1)

− (�x − �x ′)2

8
[ f (ν + 3) f (ν + 1) + f (ν + 2) f (ν + 2)]

}
(A.12)

C64(τ − τ ′, |�x − �x ′|) = 1

2(4π)N−1β2

{
−1

4
f (ν + 2) f (ν + 1)

}
(A.13)

C65(τ − τ ′, |�x − �x ′|) = 1

2(4π)N−1β2

{
1

4
f (ν + 2) f (ν + 2)

}
. (A.14)

Appendix B. High-temperature expansion

Using equation (31), we have the high-temperature expansions of the correlators

�T 2
0000(x, 0) = (N − 1)(N − 2)�2[(N − 1)/2]

8πN−1|�x|2N

( |�x|
β

)2

+ e−2π |�x|/β cos

(
2πτ

β

)
(N − 2)�[(N − 1)/2]

π(N−3)/2|�x|2N

( |�x|
β

) N
2 +2

×
[

1 − 3N(N + 2)

16(N − 2)π

(
β

|�x|
)

+ · · ·
]

+ · · · (B.1)

�T 2
000i(x, 0) = −xi

β
e−2π |�x|/β sin

(
2πτ

β

)
(N − 2)�[(N − 1)/2]

π(N−3)/2|�x|2N

×
( |�x|

β

) N
2 +1 [

1 − N(N − 3)

32π

(
β

|�x|
)

+ · · ·
]

+ · · · (B.2)

�T 2
00i j(x, 0) =

[
N

|�x|2
β2

δi j − 2(N − 1)
xix j

β2

]
(N − 3)�2[(N − 1)/2]

8πN−1|�x|2N

+ e−2π |�x|/β cos

(
2πτ

β

)
(N − 2)�[(N − 1)/2]

π(N−3)/2|�x|2N

( |�x|
β

)N/2

12
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×
{
δi j

( |�x|2
β2

) [
1 − 3N2 + 6N + 16

16(N − 2)π

(
β

|�x|
)

+ · · ·
]

−2
xix j

β2

[
1 + N3 − 3N2 − 26N + 16

32(N − 2)π

(
β

|�x|
)

+ · · ·
]}

+ · · · (B.3)

�T 2
0i0 j(x, 0) =

[ |�x|2
β2

δi j − (N − 1)
xix j

β2

]
e−2π |�x|/β cos

(
2πτ

β

)
�[(N − 1)/2]

π(N−3)/2|�x|2N

( |�x|
β

)N/2

×
[

1 + (N − 2)(N − 4)

16π

(
β

|�x|
)

+ · · ·
]

+ · · · (B.4)

�T 2
0i jk(x, 0) = e−2π |�x|/β sin

(
2πτ

β

)
�[(N − 1)/2]

π(N−3)/2|�x|2N

( |�x|
β

) N
2 −1

×
{
−(N − 2)

|�x|2xi

β3
δ jk

[
1 + N(N − 3)

32π

(
β

|�x|
)

+ · · ·
]

−|�x|2 (
δi jxk + δikx j

)
β3

[
1 + N(N − 2)

16π

(
β

|�x|
)

+ · · ·
]

+2(N − 1)
xix jxk

β3

[
1 + N(N − 2)

16π

(
β

|�x|
)

+ · · ·
]}

+ · · · (B.5)

�T 2
i jkl (x, 0) = �2[(N − 1)/2]

8πN−1|�x|2Nβ2

{
(N2 − 3N − 2)|�x|2δi jδkl + 2|�x|2 (

δikδ jl + δilδ jk
)

−2(N − 1)(N − 3)
(
δi jxkxl + δklxix j

)
−2(N − 1)

(
δikx jxl + δilx jxk + δ jkxixl + δ jlxixk

) + 4(N − 1)2

|�x|2 xix jxkxl

}

+ e−2π |�x|/β cos

(
2πτ

β

)
�[(N − 1)/2]

π(N−3)/2|�x|2Nβ2

( |�x|
β

)N/2

×
{
(N − 2)|�x|2δi jδkl

[
1 − (3N2 + 6N + 32)

16(N − 2)π

(
β

|�x|
)

+ · · ·
]

+|�x|2 (
δikδ jl + δilδ jk

) [
1

π

(
β

|�x|
)

+ · · ·
]

− 2(N − 2)
(
δi jxkxl + δklxix j

)
×

[
1 + (N3 − 3N2 − 26N + 16)

32(N − 2)π

(
β

|�x|
)

+ . . .

]
− (

δikx jxl + δilx jxk + δ jkxixl + δ jlxixk
)

×
[

1 + (N2 + 10N − 8)

16π

(
β

|�x|
)

+ · · ·
]

+4(N − 1)

|�x|2 xix jxkxl

[
1 + N(N + 2)

16π

(
β

|�x|
)

+ · · ·
]}

+ · · · . (B.6)

Appendix C. Low-temperature expansion

Using equation (42), we have the low-temperature expansions of the correlators with
s2 = |�x|2 + τ 2. We present the results for T = 0 and T �= 0 separately:

�T 2
μναβ (x, 0) = �T 2

μναβ(T=0)(x, 0) + �T 2
μναβ(T �=0)(x, 0), (C.1)

13
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where the temperature-independent part can be written in the covariant form

�T 2
μναβ(T=0)(x, 0) = �2(N/2)

2πNs2N

[
N2 − N − 4

4
δμνδαβ + 1

2
(δμαδνβ + δμβδνα )

−N(N − 2)

2s2
(δμνxαxβ + δαβxμxν )

− N

2s2
(δμαxνxβ + δμβxνxα + δναxμxβ + δνβxμxα ) + N2

s4
xμxνxαxβ

]
. (C.2)

Then, the temperature-dependent parts can be expanded as follows:

�T 2
0000(T �=0)(x, 0) = −N�2(N/2)ζ (N)

2πNsNβN

(
1 − Nτ 2

s2

)
+ · · · (C.3)

�T 2
000i(T �=0)(x, 0) = N2�2(N/2)ζ (N)τxi

2πNsN+2βN
+ · · · (C.4)

�T 2
00i j(T �=0)(x, 0) = �2(N/2)ζ (N)

2πNsNβN

[
δi j

(
(N − 4) − N(N − 2)τ 2

s2

)
+ 2Nxix j

s2

]
+ · · · (C.5)

�T 2
0i0 j(T �=0)(x, 0) = −�2(N/2)ζ (N)

2πNsNβN

[
δi j

(
(N − 2) + Nτ 2

s2

)
− N(N − 1)xix j

s2

]
+ · · · (C.6)

�T 2
0i jk(T �=0)(x, 0) = −N�2(N/2)ζ (N)τ

2πNsN+2βN

[
(N − 2)xiδ jk + (δi jxk + δikx j)

] + · · · (C.7)

�T 2
i jkl(T �=0)(x, 0) = −�2(N/2)ζ (N)

2πNsNβN

[
δi jδkl

(
(N + 4) − N2τ 2

s2

)

−2(δikδ jl + δilδ jk) + 2N

s2
(δi jxkxl + δklxix j)

+ N

s2
(δikx jxl + δilx jxk + δ jkxixl + δ jlxixk)

]
+ · · · . (C.8)
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