We calculate the expectation values of the stress-energy bitensor defined at
two different spacetime points x,x′ of a massless, minimally coupled scalar
field with respect to a quantum state at finite temperature T in a flat
N-dimensional spacetime by means of the generalized zeta-function method.
These correlators, also known as the noise kernels, give the fluctuations of
energy and momentum density of a quantum field which are essential for the
investigation of the physical effects of negative energy density in certain
spacetimes or quantum states. They also act as the sources of the
Einstein-Langevin equations in stochastic gravity which one can solve for the
dynamics of metric fluctuations as in spacetime foams. In terms of
constitutions these correlators are one rung above (in the sense of the
correlation -- BBGKY or Schwinger-Dyson -- hierarchies) the mean (vacuum and
thermal expectation) values of the stress-energy tensor which drive the
semiclassical Einstein equation in semiclassical gravity. The low and the high
temperature expansions of these correlators are also given here: At low
temperatures, the leading order temperature dependence goes like TN while
at high temperatures they have a T2 dependence with the subleading terms
exponentially suppressed by e−T. We also discuss the singular behaviors of
the correlators in the x′→x coincident limit as was done before
for massless conformal quantum fields.Comment: 23 pages, no figures. Invited contribution to a Special Issue of
Journal of Physics A in honor of Prof. J. S. Dowke