162 research outputs found

    Ecological and evolutionary drivers of hemoplasma infection and bacterial genotype sharing in a Neotropical bat community

    Get PDF
    Most emerging pathogens can infect multiple species, underlining the importance of understanding the ecological and evolutionary factors that allow some hosts to harbour greater infection prevalence and share pathogens with other species. However, our understanding of pathogen jumps is based primarily around viruses, despite bacteria accounting for the greatest proportion of zoonoses. Because bacterial pathogens in bats (order Chiroptera) can have conservation and human health consequences, studies that examine the ecological and evolutionary drivers of bacterial prevalence and barriers to pathogen sharing are crucially needed. Here were studied haemotropic Mycoplasma spp. (i.e., haemoplasmas) across a speciesâ€rich bat community in Belize over two years. Across 469 bats spanning 33 species, half of individuals and twoâ€thirds of species were haemoplasma positive. Infection prevalence was higher for males and for species with larger body mass and colony sizes. Haemoplasmas displayed high genetic diversity (21 novel genotypes) and strong host specificity. Evolutionary patterns supported codivergence of bats and bacterial genotypes alongside phylogenetically constrained host shifts. Bat species centrality to the network of shared haemoplasma genotypes was phylogenetically clustered and unrelated to prevalence, further suggesting rare—but detectable—bacterial sharing between species. Our study highlights the importance of using fine phylogenetic scales when assessing host specificity and suggests phylogenetic similarity may play a key role in host shifts not only for viruses but also for bacteria. Such work more broadly contributes to increasing efforts to understand crossâ€species transmission and the epidemiological consequences of bacterial pathogens

    Multiparametric determination of genes and their point mutations for identification of beta-lactamases

    Get PDF

    Strong signature of natural selection within an FHIT intron implicated in prostate cancer risk

    Get PDF
    Previously, a candidate gene linkage approach on brother pairs affected with prostate cancer identified a locus of prostate cancer susceptibility at D3S1234 within the fragile histidine triad gene (FHIT), a tumor suppressor that induces apoptosis. Subsequent association tests on 16 SNPs spanning approximately 381 kb surrounding D3S1234 in Americans of European descent revealed significant evidence of association for a single SNP within intron 5 of FHIT. In the current study, resequencing and genotyping within a 28.5 kb region surrounding this SNP further delineated the association with prostate cancer risk to a 15 kb region. Multiple SNPs in sequences under evolutionary constraint within intron 5 of FHIT defined several related haplotypes with an increased risk of prostate cancer in European-Americans. Strong associations were detected for a risk haplotype defined by SNPs 138543, 142413, and 152494 in all cases (Pearson's χ2 = 12.34, df 1, P = 0.00045) and for the homozygous risk haplotype defined by SNPs 144716, 142413, and 148444 in cases that shared 2 alleles identical by descent with their affected brothers (Pearson's χ2 = 11.50, df 1, P = 0.00070). In addition to highly conserved sequences encompassing SNPs 148444 and 152413, population studies revealed strong signatures of natural selection for a 1 kb window covering the SNP 144716 in two human populations, the European American (π = 0.0072, Tajima's D= 3.31, 14 SNPs) and the Japanese (π = 0.0049, Fay & Wu's H = 8.05, 14 SNPs), as well as in chimpanzees (Fay & Wu's H = 8.62, 12 SNPs). These results strongly support the involvement of the FHIT intronic region in an increased risk of prostate cancer. © 2008 Ding et al

    Widespread Contribution of Gdf7 Lineage to Cerebellar Cell Types and Implications for Hedgehog-Driven Medulloblastoma Formation

    Get PDF
    The roof plate is a specialized embryonic midline tissue of the central nervous system that functions as a signaling center regulating dorsal neural patterning. In the developing hindbrain, roof plate cells express Gdf7 and previous genetic fate mapping studies showed that these cells contribute mostly to non-neural choroid plexus epithelium. We demonstrate here that constitutive activation of the Sonic hedgehog signaling pathway in the Gdf7 lineage invariably leads to medulloblastoma. Lineage tracing analysis reveals that Gdf7-lineage cells not only are a source of choroid plexus epithelial cells, but are also present in the cerebellar rhombic lip and contribute to a subset of cerebellar granule neuron precursors, the presumed cell-of-origin for Sonic hedgehog-driven medulloblastoma. We further show that Gdf7-lineage cells also contribute to multiple neuronal and glial cell types in the cerebellum, including glutamatergic granule neurons, unipolar brush cells, Purkinje neurons, GABAergic interneurons, Bergmann glial cells, and white matter astrocytes. These findings establish hindbrain roof plate as a novel source of diverse neural cell types in the cerebellum that is also susceptible to oncogenic transformation by deregulated Sonic hedgehog signaling

    Active medulloblastoma enhancers reveal subgroup-specific cellular origins

    Get PDF
    Medulloblastoma is a highly malignant paediatric brain tumour, often inflicting devastating consequences on the developing child. Genomic studies have revealed four distinct molecular subgroups with divergent biology and clinical behaviour. An understanding of the regulatory circuitry governing the transcriptional landscapes of medulloblastoma subgroups, and how this relates to their respective developmental origins, is lacking. Here, using H3K27ac and BRD4 chromatin immunoprecipitation followed by sequencing (ChIP-seq) coupled with tissue-matched DNA methylation and transcriptome data, we describe the active cis-regulatory landscape across 28 primary medulloblastoma specimens. Analysis of differentially regulated enhancers and super-enhancers reinforced inter-subgroup heterogeneity and revealed novel, clinically relevant insights into medulloblastoma biology. Computational reconstruction of core regulatory circuitry identified a master set of transcription factors, validated by ChIP-seq, that is responsible for subgroup divergence, and implicates candidate cells of origin for Group 4. Our integrated analysis of enhancer elements in a large series of primary tumour samples reveals insights into cis-regulatory architecture, unrecognized dependencies, and cellular origins

    Влияние на миокард предварительной иммунизации анатоксинами в постреанимационном периоде

    Get PDF
    Objective: to study the impact of preimmunization with tetanus, diphtheria, and staphylococcal anatoxins on postresuscitative myocardial pathology.Materials and methods. Chronic (5-week) experiments were made on 51 mongrel dogs immunized with tetanus, diphtheria, and staphylococcal anatoxins. Acute one-stage blood loss served as a model of dying. The dogs were resuscitated using autoblood by the complex procedure described by V. A. Negovsky et al. Monitoring (electrophysiological studies of the myocardium and thermodilution) was performed in the postresuscitative period. A morphological study and electron microscopy were made.Results. The authors revealed the stimulating effect of tetanus ana-toxin on the cardiovascular system, the best survival after resuscitation, with less pronounced myocardial dystrophic changes; depressed cardiac performance after immunization with diphtheria anatoxin, significant morphological changes lowering postresuscitative animal survival; deteriorated sinoatrial conduction, transient myocardial dystrophic and necrobiotic changets after immunization with staphylococcal anatoxin.Conclusion. Preimmunization with tetanus ana-toxin has a myocardial stimulating impact in the postresuscitative period, improves animal survival; immunization with diphtheria anatoxin deteriorates the recovery of cardiac performance, and negatively affects postresuscitative survival; immunization with staphylococcal anatoxin causes transient myocardial pathomorphological changes, without negatively affecting the survival rates after resuscitation. Цель. Изучить влияние предварительной иммунизации столбнячным, дифтерийным и стафилококковым анатоксинами на постреанимационную патологию миокарда.Материалы и методы. Хронические эксперименты (5 недель) проведены на 51 беспородных собаках, иммунизированных столбнячным, дифтерийным и стафилококковым анатоксинами. Моделью умирания служила острая одномоментная кровопотеря. Оживление собак проводилось аутогенной кровью по комплексной методике В. А. Неговского с соавт. В постреанимационном периоде проводили мониторинг (электрофизиологические методы исследования миокарда и термодилюция). Проводилось морфологическое исследование, электронная микроскопия.Результаты. Выявлено стимулирующее влияние столбнячного анатоксина на сердечно-сосудистую систему, наилучшая выживаемость после реанимации, при менее выраженных дистрофических изменениях миокарда; угнетение сердечной деятельности, при иммунизации дифтерийным анатоксином, выраженные морфологические изменения, снижающие выживаемость животных после реанимации; ухудшение синоатриальной проводимости, преходящие дистрофические и некробиотические изменения в миокарде, при иммунизации стафилококковым анатоксином.Заключение. Предварительная иммунизация столбнячным анатоксином оказывает стимулирующее действие на миокард в постреанимационном периоде, улучшает выживаемость животных, иммунизация дифтерийным анатоксином ухудшает восстановление сердечной деятельности и отрицательно влияет на выживаемость после реанимации, при иммунизации стафилококковым анатоксином, отмечены преходящие патоморфологические изменения в миокарде, не влияющие отрицательно на выживаемость после реанимации.

    Congenital Hydrocephalus and Abnormal Subcommissural Organ Development in Sox3 Transgenic Mice

    Get PDF
    Congenital hydrocephalus (CH) is a life-threatening medical condition in which excessive accumulation of CSF leads to ventricular expansion and increased intracranial pressure. Stenosis (blockage) of the Sylvian aqueduct (Aq; the narrow passageway that connects the third and fourth ventricles) is a common form of CH in humans, although the genetic basis of this condition is unknown. Mouse models of CH indicate that Aq stenosis is associated with abnormal development of the subcommmissural organ (SCO) a small secretory organ located at the dorsal midline of the caudal diencephalon. Glycoproteins secreted by the SCO generate Reissner's fibre (RF), a thread-like structure that descends into the Aq and is thought to maintain its patency. However, despite the importance of SCO function in CSF homeostasis, the genetic program that controls SCO development is poorly understood. Here, we show that the X-linked transcription factor SOX3 is expressed in the murine SCO throughout its development and in the mature organ. Importantly, overexpression of Sox3 in the dorsal diencephalic midline of transgenic mice induces CH via a dose-dependent mechanism. Histological, gene expression and cellular proliferation studies indicate that Sox3 overexpression disrupts the development of the SCO primordium through inhibition of diencephalic roof plate identity without inducing programmed cell death. This study provides further evidence that SCO function is essential for the prevention of hydrocephalus and indicates that overexpression of Sox3 in the dorsal midline alters progenitor cell differentiation in a dose-dependent manner

    Looking at Cerebellar Malformations through Text-Mined Interactomes of Mice and Humans

    Get PDF
    WE HAVE GENERATED AND MADE PUBLICLY AVAILABLE TWO VERY LARGE NETWORKS OF MOLECULAR INTERACTIONS: 49,493 mouse-specific and 52,518 human-specific interactions. These networks were generated through automated analysis of 368,331 full-text research articles and 8,039,972 article abstracts from the PubMed database, using the GeneWays system. Our networks cover a wide spectrum of molecular interactions, such as bind, phosphorylate, glycosylate, and activate; 207 of these interaction types occur more than 1,000 times in our unfiltered, multi-species data set. Because mouse and human genes are linked through an orthological relationship, human and mouse networks are amenable to straightforward, joint computational analysis. Using our newly generated networks and known associations between mouse genes and cerebellar malformation phenotypes, we predicted a number of new associations between genes and five cerebellar phenotypes (small cerebellum, absent cerebellum, cerebellar degeneration, abnormal foliation, and abnormal vermis). Using a battery of statistical tests, we showed that genes that are associated with cerebellar phenotypes tend to form compact network clusters. Further, we observed that cerebellar malformation phenotypes tend to be associated with highly connected genes. This tendency was stronger for developmental phenotypes and weaker for cerebellar degeneration

    The p53 Inhibitor MDM2 Facilitates Sonic Hedgehog-Mediated Tumorigenesis and Influences Cerebellar Foliation

    Get PDF
    Disruption of cerebellar granular neuronal precursor (GNP) maturation can result in defects in motor coordination and learning, or in medulloblastoma, the most common childhood brain tumor. The Sonic Hedgehog (Shh) pathway is important for GNP proliferation; however, the factors regulating the extent and timing of GNP proliferation, as well as GNP differentiation and migration are poorly understood. The p53 tumor suppressor has been shown to negatively regulate the activity of the Shh effector, Gli1, in neural stem cells; however, the contribution of p53 to the regulation of Shh signaling in GNPs during cerebellar development has not been determined. Here, we exploited a hypomorphic allele of Mdm2 (Mdm2puro), which encodes a critical negative regulator of p53, to alter the level of wild-type MDM2 and p53 in vivo. We report that mice with reduced levels of MDM2 and increased levels of p53 have small cerebella with shortened folia, reminiscent of deficient Shh signaling. Indeed, Shh signaling in Mdm2-deficient GNPs is attenuated, concomitant with decreased expression of the Shh transducers, Gli1 and Gli2. We also find that Shh stimulation of GNPs promotes MDM2 accumulation and enhances phosphorylation at serine 166, a modification known to increase MDM2-p53 binding. Significantly, loss of MDM2 in Ptch1+/− mice, a model for Shh-mediated human medulloblastoma, impedes cerebellar tumorigenesis. Together, these results place MDM2 at a major nexus between the p53 and Shh signaling pathways in GNPs, with key roles in cerebellar development, GNP survival, cerebellar foliation, and MB tumorigenesis

    Genomic and gene expression profiling of minute alterations of chromosome arm 1p in small-cell lung carcinoma cells

    Get PDF
    Genetic alterations occurring on human chromosome arm 1p are common in many types of cancer including lung, breast, neuroblastoma, pheochromocytoma, and colorectal. The identification of tumour suppressors and oncogenes on this arm has been limited by the low resolution of current technologies for fine mapping. In order to identify genetic alterations on 1p in small-cell lung carcinoma, we developed a new resource for fine mapping segmental DNA copy number alterations. We have constructed an array of 642 ordered and fingerprint-verified bacterial artificial chromosome clones spanning the 120 megabase (Mb) 1p arm from 1p11.2 to p36.33. The 1p arm of 15 small-cell lung cancer cell lines was analysed at sub-Mb resolution using this arm-specific array. Among the genetic alterations identified, two regions of recurrent amplification emerged. They were detected in at least 45% of the samples: a 580 kb region at 1p34.2–p34.3 and a 270 kb region at 1p11.2. We further defined the potential importance of these genomic amplifications by analysing the RNA expression of the genes in these regions with Affymetrix oligonucleotide arrays and semiquantitative reverse transcriptase–polymerase chain reaction. Our data revealed overexpression of the genes HEYL, HPCAL4, BMP8, IPT, and RLF, coinciding with genomic amplification
    corecore