50 research outputs found

    SDO Observations of Magnetic Reconnection at Coronal Hole Boundaries

    Full text link
    With the observations from the Atmospheric Imaging Assembly (AIA) and the Helioseismic and Magnetic Imager (HMI) aboard the \emph{Solar Dynamics Observatory}, we investigate the coronal hole boundaries (CHBs) of an equatorial extension of polar coronal hole. At the CHBs, lots of extreme-ultraviolet (EUV) jets, which appear to be the signatures of magnetic reconnection, are observed in the 193 {\AA} images, and some jets occur repetitively at the same sites. The evolution of the jets is associated with the emergence and cancelation of magnetic fields. We notice that both the east and the west CHBs shift westward, and the shift velocities are close to the velocities of rigid rotation compared with those of the photospheric differential rotation. This indicates that magnetic reconnection at CHBs results in the evolution of CHBs and maintains the rigid rotation of coronal holes.Comment: 10 pages, 5 figures, accepted for publication in ApJ

    Magnetic Evolution and Temperature Variation in a Coronal Hole

    Full text link
    We have explored the magnetic flux evolution and temperature variation in a coronal-hole region, using Big Bear Solar Observatory (BBSO) deep magnetograms and {\it SOHO}/EIT images observed from 2005 October 10 to 14. For comparison, we also investigated a neighboring quiet region of the Sun. The coronal hole evolved from its mature stage to its disappearance during the observing period. We have obtained the following results: (1) When the coronal hole was well developed on October 10, about 60 % of the magnetic flux was positive. The EUV brightness was 420 counts pixel1^{-1}, and the coronal temperature, estimated from the line ratio of the EIT 195 {\AA} and 171 {\AA} images, was 1.07 MK. (2) On October 14, when the coronal hole had almost disappeared, 51 % of the magnetic flux was positive, the EUV radiance was 530 counts pixel1^{-1}, and the temperature was 1.10 MK. (3) In the neighboring quiet region, the fraction of positive flux varied between 0.49 and 0.47. The EUV brightness displayed an irregular variation, with a mean value of 870 counts pixel1^{-1}. The temperature was almost constant at 1.11 MK during the five-day observation. Our results demonstrate that in a coronal hole less imbalance of the magnetic flux in opposite polarities leads to stronger EUV brightness and higher coronal temperatures

    Comparison of Magnetic Flux Distribution between a Coronal Hole and a Quiet Region

    Full text link
    Employing Big Bear Solar Observatory (BBSO) deep magnetograms and Hα{\alpha} images in a quiet region and a coronal hole, observed on September 14 and 16, 2004, respectively, we have explored the magnetic flux emergence, disappearance and distribution in the two regions. The following results are obtained: (1) The evolution of magnetic flux in the quiet region is much faster than that in the coronal hole, as the flux appeared in the form of ephemeral regions in the quiet region is 4.3 times as large as that in the coronal hole, and the flux disappeared in the form of flux cancellation, 2.9 times as fast as in the coronal hole. (2) More magnetic elements with opposite polarities in the quiet region are connected by arch filaments, estimating from magnetograms and Hα{\alpha} images. (3) We measured the magnetic flux of about 1000 magnetic elements in each observing region. The flux distribution of network and intranetwork (IN) elements is similar in both polarities in the quiet region. For network fields in the coronal hole, the number of negative elements is much more than that of positive elements. However for the IN fields, the number of positive elements is much more than that of negative elements. (4) In the coronal hole, the fraction of negative flux change obviously with different threshold flux density. 73% of the magnetic fields with flux density larger than 2 Gauss is negative polarity, and 95% of the magnetic fields is negative, if we only measure the fields with their flux density larger than 20 Gauss. Our results display that in a coronal hole, stronger fields is occupied by one predominant polarity; however the majority of weaker fields, occupied by the other polarity

    Dipolar Evolution in a Coronal Hole Region

    Full text link
    Using observations from the SOHO, STEREO and Hinode, we investigate magnetic field evolution in an equatorial coronal hole region. Two dipoles emerge one by one. The negative element of the first dipole disappears due to the interaction with the positive element of the second dipole. During this process, a jet and a plasma eruption are observed. The opposite polarities of the second dipole separate at first, and then cancel with each other, which is first reported in a coronal hole. With the reduction of unsigned magnetic flux of the second dipole from 9.8*10^20 Mx to 3.0*10^20 Mx in two days, 171 A brightness decreases by 75% and coronal loops shrink obviously. At the cancellation sites, the transverse fields are strong and point directly from the positive elements to the negative ones, meanwhile Doppler red-shifts with an average velocity of 0.9 km s-1 are observed, comparable to the horizontal velocity (1.0 km s-1) derived from the cancelling island motion. Several days later, the northeastern part of the coronal hole, where the dipoles are located, appears as a quiet region. These observations support the idea that the interaction between the two dipoles is caused by flux reconnection, while the cancellation between the opposite polarities of the second dipole is due to the submergence of original loops. These results will help us to understand coronal hole evolution.Comment: 23 pages, 9 figures. accepted by Ap

    EUV jets, type III radio bursts and sunspot waves investigated using SDO/AIA observations

    Full text link
    Images from the Solar Dynamics Observatory (SDO) at 211A are used to identify the solar source of the type III radio bursts seen in WIND/WAVES dynamic spectra. We analyse a 2.5 hour period during which six strong bursts are seen. The radio bursts correlate very well with the EUV jets coming from the western side of a sunspot in AR11092. The EUV jet emission also correlates well with brightening at what looks like their footpoint at the edge of the umbra. For 10-15 min after strong EUV jets are ejected, the footpoint brightens at roughly 3 min intervals. In both the EUV images and the extracted light curves, it looks as though the brightening is related to the 3-min sunspot oscillations, although the correlation coefficient is rather low. The only open field near the jets is rooted in the sunspot. We conclude that active region EUV/X-ray jets and interplanetary electron streams originate on the edge of the sunspot umbra. They form along a current sheet between the sunspot open field and closed field connecting to underlying satellite flux. Sunspot running penumbral waves cause roughly 3-min jet footpoint brightening. The relationship between the waves and jets is less clear.Comment: 4 pages, 7 figures, Accepted by A&A Letters. For associated gif movie, see http://www.mps.mpg.de/data/outgoing/innes/jets/losb_304_211_rd.gi

    VLA multifrequency observations of RS CVn binaries

    Get PDF
    We present multiepoch Very Large Array (VLA) observations at 1.4 GHz, 4.9 GHz, 8.5 GHz and 14.9 GHz for a sample of eight RS CVn binary systems. Circular polarization measurements of these systems are also reported. Most of the fluxes observed are consistent with incoherent emission from mildly relativistic electrons. Several systems show an increase of the degree of circular polarization with increasing frequency in the optically thin regime, in conflict with predictions by gyrosynchrotron models. We observed a reversal in the sense of circular polarization with increasing frequency in three non-eclipsing systems: EI Eri, DM Uma and HD 8358. We find clear evidence for coherent plasma emission at 1.4 GHz in the quiescent spectrum of HD 8358 during the helicity reversal. The degrees of polarization of the other two systems could also be accounted for by a coherent emission process. The observations of ER Vul revealed two U-shaped flux spectra at the highest frequencies. The U-shape of the spectra may be accounted for by an optically thin gyrosynchrotron source for the low frequency part whereas the high frequency part is dominated by a thermal emission component.Comment: 12 pages, 8 figures, LaTeX, uses aa.cls. Accepted for publication in A&

    Physics of Solar Prominences: I - Spectral Diagnostics and Non-LTE Modelling

    Full text link
    This review paper outlines background information and covers recent advances made via the analysis of spectra and images of prominence plasma and the increased sophistication of non-LTE (ie when there is a departure from Local Thermodynamic Equilibrium) radiative transfer models. We first describe the spectral inversion techniques that have been used to infer the plasma parameters important for the general properties of the prominence plasma in both its cool core and the hotter prominence-corona transition region. We also review studies devoted to the observation of bulk motions of the prominence plasma and to the determination of prominence mass. However, a simple inversion of spectroscopic data usually fails when the lines become optically thick at certain wavelengths. Therefore, complex non-LTE models become necessary. We thus present the basics of non-LTE radiative transfer theory and the associated multi-level radiative transfer problems. The main results of one- and two-dimensional models of the prominences and their fine-structures are presented. We then discuss the energy balance in various prominence models. Finally, we outline the outstanding observational and theoretical questions, and the directions for future progress in our understanding of solar prominences.Comment: 96 pages, 37 figures, Space Science Reviews. Some figures may have a better resolution in the published version. New version reflects minor changes brought after proof editin

    Radio Emissions from Solar Active Regions

    Full text link

    Observations of the Sun at Vacuum-Ultraviolet Wavelengths from Space. Part II: Results and Interpretations

    Full text link

    Effect of suprathermal particles on the quiet Sun radio emission

    No full text
    The bremsstrahlung emissivity and absorption coefficient in the radiofrequency range are derived under the assumption that the electron population is not purely thermal, but presents a tail of high energy particles. This population is approximated by a two-component Maxwellian distribution and by the kappa-functions of different (integer) index. It is shown that, if the temperature ratio of the two Maxwellians is larger than 10, the absorption coefficient and the effective temperature (the quantities entering the radio transfer equation) depend only on the fraction R of particles in the highest temperature Maxwellian. In the case of kappa-functions the above quantities depend on the index n of the functions.
The microwave radio spectrum is computed for different values of R and for 3n63 \leq n \leq 6, finding, in all cases, brightness temperatures lower than those computed with a pure thermal distribution. This could explain some inconsistencies found between radio and EUV observations
    corecore