825 research outputs found

    Traveling waves for nonlinear Schr\"odinger equations with nonzero conditions at infinity, II

    Full text link
    We prove the existence of nontrivial finite energy traveling waves for a large class of nonlinear Schr\"odinger equations with nonzero conditions at infinity (includindg the Gross-Pitaevskii and the so-called "cubic-quintic" equations) in space dimension N≄2 N \geq 2. We show that minimization of the energy at fixed momentum can be used whenever the associated nonlinear potential is nonnegative and it gives a set of orbitally stable traveling waves, while minimization of the action at constant kinetic energy can be used in all cases. We also explore the relationship between the families of traveling waves obtained by different methods and we prove a sharp nonexistence result for traveling waves with small energy.Comment: Final version, accepted for publication in the {\it Archive for Rational Mechanics and Analysis.} The final publication is available at Springer via http://dx.doi.org/10.1007/s00205-017-1131-

    Phase II study in young CF adults with the recombinant acid lipase MERISPASEÂź

    Get PDF

    Regulation of FATTY ACID ELONGATION1 expression in embryonic and vascular tissues of Brassica napus

    Get PDF
    International audienceThe expression of the FATTY ACID ELONGATION1 genes was characterised to provide insight into the regulation of very long chain fatty acid (VLCFA) biosynthesis in Brassica napus embryos. Each of the two rapeseed homoeologous genes (Bn-FAE1.1 and Bn-FAE1.2) encoding isozymes of 3-keto-acylCoA synthase, a subunit of the cytoplasmic acyl-CoA elongase complex that controls the production of elongated fatty acids, are expressed predominantly in developing seeds. The proximal regions of the Bn-FAE1.1 and Bn-FAE1.2 promoters possess strong sequence identity suggesting that transcriptional control of expression is mediated by this region which contains putative cis-elements characteristic of those found in the promoters of genes expressed in embryo and endosperm. Histochemical staining of rapeseed lines expressing Bn-FAE1.1 promoter:reporter gene fusions revealed a strong expression in the embryo cotyledon and axis throughout the maturation phase. Quantitative analyses revealed the region, −331 to −149, exerts a major control on cotyledon specific expression and the level of expression. A second region, −640 to −475, acts positively to enhance expression levels and extends expression of Bn-FAE1.1 into the axis and hypocotyl but also acts negatively to repress expression in the root meristem. The expression of the Bn-FAE1.1 gene was not restricted to the seed but was also detected in the vascular tissues of germinating seedlings and mature plants in the fascicular cambium tissue present in roots, stem and leaf petiole. We propose that Bn-FAE1.1 expression in vascular tissue may contribute VLCFA for barrier lipid synthesis and reflects the ancestral function of FAE1 encoded 3-keto-acylCoA synthase

    Influence of Co layer thickness on the structural and magnetic properties of multilayers

    Get PDF
    International audienceThe correlated effects of the insertion of a Pt spacer between ferromagnetic and antiferromagnetic layers and of the variation of the Co layers thickness on the structural and magnetic properties of [ (Pt/Co tCo) 3 /Pt tPt /IrMn ] n multilayers have been studied. Samples with n = 1 and 7, t Co = 0.4 and 0.6 nm, t Pt = 0 and 0.4 nm have been investigated by tomographic atom probe and superconducting quantum interference device magnetometry. For spacer free samples (t Pt = 0), the structural investigation shows that when t Co = 0.4 nm, Mn and Ir atoms diffuse deeply in the (Pt/Co) multilayers. In contrast for t Co = 0.6 nm, the Mn and Ir diffusion is much reduced. Because Pt acts as a barrier against the Mn and Ir diffusion, this difference is less pronounced in samples with Pt insertion. The hysteresis loops shapes, the exchange bias fields and the saturation magnetization values were correlated with the structural properties of these samples and discussed, taking into account the susceptibility, exchange stiffness, and perpendicular magnetic anisotropy

    Successful private–public funding of paediatric medicines research: lessons from the EU programme to fund research into off-patent medicines

    Get PDF
    The European Paediatric Regulation mandated the European Commission to fund research on off-patent medicines with demonstrated therapeutic interest for children. Responding to this mandate, five FP7 project calls were launched and 20 projects were granted. This paper aims to detail the funded projects and their preliminary results. Publicly available sources have been consulted and a descriptive analysis has been performed. Twenty Research Consortia including 246 partners in 29 European and non-European countries were created (involving 129 universities or public funded research organisations, 51 private companies with 40 SMEs, 7 patient associations). The funded projects investigate 24 medicines, covering 10 therapeutic areas in all paediatric age groups. In response to the Paediatric Regulation and to apply for a Paediatric Use Marketing Authorisation, 15 Paediatric Investigation Plans have been granted by the EMAPaediatric Committee, including 71 studies of whom 29 paediatric clinical trials, leading to a total of 7,300 children to be recruited in more than 380 investigational centres. Conclusion: Notwithstanding the EU contribution for each study is lower than similar publicly funded projects, and also considering the complexity of paediatric research, these projects are performing high-quality research and are progressing towards the increase of new paediatric medicines on the market. Private–public partnerships have been effectively implemented, providing a good example for future collaborative actions. Since these projects cover a limited number of offpatent drugs and many unmet therapeutic needs in paediatrics remain, it is crucial foreseeing new similar initiatives in forthcoming European funding programmes

    Groupwise Multimodal Image Registration using Joint Total Variation

    Get PDF
    In medical imaging it is common practice to acquire a wide range of modalities (MRI, CT, PET, etc.), to highlight different structures or pathologies. As patient movement between scans or scanning session is unavoidable, registration is often an essential step before any subsequent image analysis. In this paper, we introduce a cost function based on joint total variation for such multimodal image registration. This cost function has the advantage of enabling principled, groupwise alignment of multiple images, whilst being insensitive to strong intensity non-uniformities. We evaluate our algorithm on rigidly aligning both simulated and real 3D brain scans. This validation shows robustness to strong intensity non-uniformities and low registration errors for CT/PET to MRI alignment. Our implementation is publicly available at https://github.com/brudfors/coregistration-njtv

    Quantifying and controlling entanglement in the quantum magnet Cs2_2CoCl4_4

    Full text link
    The lack of methods to experimentally detect and quantify entanglement in quantum matter impedes our ability to identify materials hosting highly entangled phases, such as quantum spin liquids. We thus investigate the feasibility of using inelastic neutron scattering (INS) to implement a model-independent measurement protocol for entanglement based on three entanglement witnesses: one-tangle, two-tangle, and quantum Fisher information (QFI). We perform high-resolution INS measurements on Cs2_2CoCl4_4, a close realization of the S=1/2S=1/2 transverse-field XXZ spin chain, where we can control entanglement using the magnetic field, and compare with density-matrix renormalization group calculations for validation. The three witnesses allow us to infer entanglement properties and make deductions about the quantum state in the material. We find QFI to be a particularly robust experimental probe of entanglement, whereas the one- and two-tangles require more careful analysis. Our results lay the foundation for a general entanglement detection protocol for quantum spin systems.Comment: Main text: 7 pages, 4 figures. Supplementary Information: 15 pages, 15 figure

    2D FT-ICR MS of Calmodulin : a top-down and bottom-up approach

    Get PDF
    Two-dimensional Fourier transform ion cyclotron resonance mass spectrometry (2D FT-ICR MS) allows data-independent fragmentation of all ions in a sample and correlation of fragment ions to their precursors through the modulation of precursor ion cyclotron radii prior to fragmentation. Previous results show that implementation of 2D FT-ICR MS with infrared multi-photon dissociation (IRMPD) and electron capture dissociation (ECD) has turned this method into a useful analytical tool. In this work, IRMPD tandem mass spectrometry of calmodulin (CaM) has been performed both in one-dimensional and two-dimensional FT-ICR MS using a top-down and bottom-up approach. 2D IRMPD FT-ICR MS is used to achieve extensive inter-residue bond cleavage and assignment for CaM, using its unique features for fragment identification in a less time- and sample-consuming experiment than doing the same thing using sequential MS/MS experiments
    • 

    corecore