76 research outputs found

    Target localization in passive and active systems : performance bonds

    Get PDF
    The main goal of this dissertation is to improve the understanding and to develop ways to predict the performance of localization techniques as a function of signal-to-noise ratio (SNR) and of system parameters. To this end, lower bounds on the maximum likelihood estimator (MLE) performance are studied. The Cramer-Rao lower bound (CRLB) for coherent passive localization of a near-field source is derived. It is shown through the Cramer-Rao bound that, the coherent localization systems can provide high accuracies in localization, to the order of carrier frequency of the observed signal. High accuracies come to a price of having a highly multimodal estimation metric which can lead to sidelobes competing with the mainlobe and engendering ambiguity in the selection of the correct peak. The effect of the sidelobes over the estimator performance at different SNR levels is analyzed and predicted with the use of Ziv-Zakai lower bound (ZZB). Through simulations it is shown that ZZB is tight to the MLEs performance over the whole SNR range. Moreover, the ZZB is a convenient tool to assess the coherent localization performance as a function of various system parameters. The ZZB was also used to derive a lower bound on the MSE of estimating the range and the range rate of a target in active systems. From the expression of the derived lower bound it was noted that, the ZZB is determined by SNR and by the ambiguity function (AF). Thus, the ZZB can serve as an alternative to the ambiguity function (AF) as a tool for radar design. Furthermore, the derivation is extended to the problem of estimating target’s location and velocity in a distributed multiple input multiple output (MIMO) radar system. The derived bound is determined by SNR, by the product between the number of transmitting antennas and the number of receiving antennas from the radar system, and by all the ambiguity functions and the cross-ambiguity functions corresponding to all pairs transmitter-target-receiver. Similar to the coherent localization, the ZZB can be applied to study the performance of the estimator as a function of different system parameters. Comparison between the ZZB and the MSE of the MLE obtained through simulations demonstrate that the bound is tight in all SNR regions

    The influence of conservation tillage systems on productivity elements in the maize crop on the Moldavian Plain

    Get PDF
    The experiment was carried out between 2005 – 2008 at Ezareni – The Experimental Farm of the Agricultural University of Iasi, in the East side of Romania (47o 07’ N latitude, 27o 30’E longitude), on a cambic chernozem (SRTS2003), or haplic chernozems (WRB-SR, 1998), with a clay-loamy texture, 6.8 pH, 2.7% humus content and a medium level of fertilization. The experimental area has an annual average temperature of 9.4o C and precipitation of 587 mm. The experiment was a “split plot” design with three replicates. Plots covered an area of 60 m2 with a rotation of soybean - winter wheat - maize. The maize mean yield values showed significant differences in plots plowed at 20 cm and very significant results in the disc harrow treatment when compared to the control treatment. These findings confirm that increasing tillage depth result in higher yields. In disc harrow plots, the mean yield over three years was 4532 kg/ha while the conventional tillage variant (plowed at 20 cm) yield recorded 5528 kg/ha. The highest yield of 6482 kg/ha was recorded in the control treatment (plowed at 30 cm). The conservation variants, chisel and paraplow, resulted in intermediate yields between disc harrow and the control treatment, the differences being statistically nonsignificant

    The effect of some tillage systems on soil pedomorphological indicators in dryness conditions on soybean crop

    Get PDF
    The main objective of this study consists in the effect of some tillage systems on pedomorphological indicators of cross section made in experimental field Ezareni – Iasi, on the development of advanced agricultural technologies for crop cultivation. In Romania have been conducted many researches on the influence of various tillage systems on physical, chemical and biological indicators and their residual effect, and less insisted on the morphological changes. The study of pedomorphological indicators have been accomplished on cross section (2x0.7m) performed after harvesting maize and the variants were: ploughed at 30 cm depth (V1), paraplow (V2), chisel (V3) and disk harrow (V4). The novelty and originality of the study consists in illustrating the morphological indicators through images performed from cross section and processed with special programs. The morphological description of cross section of cambic chernozem was based on the pedomorphological indicators presented in development methodology of pedological study [16]. Pedomorphological indicators of soil cross section may be additional criteria in choosing a tillage system suited to local climatic features. The cross soil section perpendicular to the direction of tillage in the chisel + superficial rotary tiller plot has a mildly loosened aspect, and locally on the tractor wheel tracks the soil is highly compacted. The repeated disc harrow use determined soil structure degradation by fragmentation of the elements and the reduction of their mean diameter. On tractor wheel tracks the soil structure is massive and the compaction process can be observed to a depth of 20 cm. In the underlying horizon (Ap) the soil maintains mildly to moderately compacted. Locally the soil is crossed by vertical or slightly oblique galleries resulted from soil macrofauna activity. In the subarable horizon formed a dense and compacted soil layer known as plowpan or hardpan

    18F-FDG PET/MRI Imaging in a Preclinical Rat Model of Cardiorenal Syndrome—An Exploratory Study

    Get PDF
    Cardiorenal syndrome (CRS) denotes the bidirectional interaction of chronic kidney disease and heart failure with an adverse prognosis but with a limited understanding of its pathogenesis. This study correlates biochemical blood markers, histopathological and immunohistochemistry features, and 2-deoxy-2-fluoro-D-glucose positron emission tomography (18F-FDG PET) metabolic data in low-dose doxorubicin-induced heart failure, cardiorenal syndrome, and renocardiac syndrome induced on Wistar male rats. To our knowledge, this is the first study that investigates the underlying mechanisms for CRS progression in rats using 18F-FDG PET. Clinical, metabolic cage monitoring, biochemistry, histopathology, and immunohistochemistry combined with PET/MRI (magnetic resonance imaging) data acquisition at distinct points in the disease progression were employed for this study in order to elucidate the available evidence of organ crosstalk between the heart and kidneys. In our CRS model, we found that chronic treatment with low-dose doxorubicin followed by acute 5/6 nephrectomy incurred the highest mortality among the study groups, while the model for renocardiac syndrome resulted in moderate-to-high mortality. 18F-FDG PET imaging evidenced the doxorubicin cardiotoxicity with vascular alterations, normal kidney development damage, and impaired function. Given the fact that standard clinical markers were insensitive to early renal injury, we believe that the decreasing values of the 18F-FDG PET-derived renal marker across the groups and, compared with their age-matched controls, along with the uniform distribution seen in healthy developing rats, could have a potential diagnostic and prognostic yield in cardiorenal syndrome

    Magnetic Nanoemulsions for the Intra-Articular Delivery of Ascorbic Acid and Dexamethasone

    Get PDF
    (1) Osteoarthritis (OA) is a progressive joint degenerative disease that currently has no cure. Limitations in the development of innovative disease modifying therapies are related to the complexity of the underlying pathogenic mechanisms. In addition, there is the unmet need for efficient drug delivery methods. Magnetic nanoparticles (MNPs) have been proposed as an efficient modality for the delivery of bioactive molecules within OA joints, limiting the side effects associated with systemic delivery. We previously demonstrated MNP’s role in increasing cell proliferation and chondrogenesis. In the design of intra-articular therapies for OA, the combined NE-MNP delivery system could provide increased stability and biological effect. (2) Proprietary Fe3O4 MNPs formulated as oil-in-water (O/W) magneto nanoemulsions (MNEs) containing ascorbic acid and dexamethasone were tested for size, stability, magnetic properties, and in vitro biocompatibility with human primary adipose mesenchymal cells (ADSC), cell mobility, and chondrogenesis. In vivo biocompatibility was tested after systemic administration in mice. (3) We report high MNE colloidal stability, magnetic properties, and excellent in vitro and in vivo biocompatibility. By increasing ADSC migration potential and chondrogenesis, MNE carrying dexamethasone and ascorbic acid could reduce OA symptoms while protecting the cartilage layer

    Whole-genome expression Profiling in skin reveals sYK as a Key regulator of inflammation in experimental epidermolysis Bullosa acquisita

    Get PDF
    Because of the morbidity and limited therapeutic options of autoimmune diseases, there is a high, and thus far, unmet medical need for development of novel treatments. Pemphigoid diseases, such as epidermolysis bullosa acquisita (EBA), are prototypical autoimmune diseases that are caused by autoantibodies targeting structural proteins of the skin, leading to inflammation, mediated by myeloid cells. To identify novel treatment targets, we performed cutaneous genome-wide mRNA expression profiling in 190 out-bred mice after EBA induction. Comparison of genome-wide mRNA expression profiles in diseased and healthy mice, and construction of a co-expression network identified Sykb (spleen tyrosine kinase, SYK) as a major hub gene. Aligned, pharmacological SYK inhibition protected mice from experimental EBA. Using lineage-specific SYK-deficient mice, we identified SYK expression on myeloid cells to be required to induce EBA. Within the predicted co-expression network, interactions of Sykb with several partners (e.g., Tlr13, Jdp2, and Nfkbid) were validated by curated databases. Additionally, novel gene interaction partners of SYK were experimentally validated. Collectively, our results identify SYK expression in myeloid cells as a requirement to promote inflammation in autoantibody-driven pathologies. This should encourage exploitation of SYK and SYK-regulated genes as potential therapeutic targets for EBA and potentially other autoantibody-mediated diseases

    De-identification of primary care electronic medical records free-text data in Ontario, Canada

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Electronic medical records (EMRs) represent a potentially rich source of health information for research but the free-text in EMRs often contains identifying information. While de-identification tools have been developed for free-text, none have been developed or tested for the full range of primary care EMR data</p> <p>Methods</p> <p>We used <it>deid </it>open source de-identification software and modified it for an Ontario context for use on primary care EMR data. We developed the modified program on a training set of 1000 free-text records from one group practice and then tested it on two validation sets from a random sample of 700 free-text EMR records from 17 different physicians from 7 different practices in 5 different cities and 500 free-text records from a group practice that was in a different city than the group practice that was used for the training set. We measured the sensitivity/recall, precision, specificity, accuracy and F-measure of the modified tool against manually tagged free-text records to remove patient and physician names, locations, addresses, medical record, health card and telephone numbers.</p> <p>Results</p> <p>We found that the modified training program performed with a sensitivity of 88.3%, specificity of 91.4%, precision of 91.3%, accuracy of 89.9% and F-measure of 0.90. The validations sets had sensitivities of 86.7% and 80.2%, specificities of 91.4% and 87.7%, precisions of 91.1% and 87.4%, accuracies of 89.0% and 83.8% and F-measures of 0.89 and 0.84 for the first and second validation sets respectively.</p> <p>Conclusion</p> <p>The <it>deid </it>program can be modified to reasonably accurately de-identify free-text primary care EMR records while preserving clinical content.</p

    The Syk tyrosine kinase is required for skin inflammation in an in vivo mouse model of epidermolysis bullosa acquisita.

    Get PDF
    The inflammatory form of epidermolysis bullosa acquisita is caused by autoantibodies against type VII collagen (C7), a component of the dermal-epidermal junction. We have previously shown that myeloid Src-family kinases mediate skin inflammation triggered by anti-C7 antibodies. Here we identify the Syk tyrosine kinase as a critical component of autoantibody-induced skin inflammation downstream of Src-family kinases. Immobilized C7-anti-C7 immune complexes triggered neutrophil activation and Syk phosphorylation in a Src-family kinase-dependent manner. Bone marrow chimeric mice lacking Syk in their hematopoietic compartment were completely protected from skin inflammation triggered by anti-C7 antibodies despite normal circulating anti-C7 levels. Syk deficiency abrogated the accumulation of CXCL2, IL-1beta and LTB4 at the site of inflammation and resulted in defective in vivo neutrophil recruitment. Syk-/- neutrophils had a normal intrinsic migratory capacity but failed to release CXCL2 or LTB4 upon activation by immobilized C7-anti-C7 immune complexes, indicating a role for Syk in the amplification of the inflammation process. These results identify Syk as a critical component of skin inflammation in a mouse model of epidermolysis bullosa acquisita and as a potential therapeutic target in epidermolysis bullosa acquisita and other mechanistically related inflammatory skin diseases such as bullous pemphigoid

    Quantum-SAR Extension of the Spectral-SAR Algorithm. Application to Polyphenolic Anticancer Bioactivity

    Get PDF
    Aiming to assess the role of individual molecular structures in the molecular mechanism of ligand-receptor interaction correlation analysis, the recent Spectral-SAR approach is employed to introduce the Quantum-SAR (QuaSAR) “wave” and “conversion factor” in terms of difference between inter-endpoint inter-molecular activities for a given set of compounds; this may account for inter-conversion (metabolization) of molecular (concentration) effects while indicating the structural (quantum) based influential/detrimental role on bio-/eco- effect in a causal manner rather than by simple inspection of measured values; the introduced QuaSAR method is then illustrated for a study of the activity of a series of flavonoids on breast cancer resistance protein

    The Flavonoid Luteolin Inhibits FcÎł-Dependent Respiratory Burst in Granulocytes, but Not Skin Blistering in a New Model of Pemphigoid in Adult Mice

    Get PDF
    Bullous pemphigoid is an autoimmune blistering skin disease associated with autoantibodies against the dermal-epidermal junction. Passive transfer of antibodies against BP180/collagen (C) XVII, a major hemidesmosomal pemphigoid antigen, into neonatal mice results in dermal-epidermal separation upon applying gentle pressure to their skin, but not in spontaneous skin blistering. In addition, this neonatal mouse model precludes treatment and observation of diseased animals beyond 2–3 days. Therefore, in the present study we have developed a new disease model in mice reproducing the spontaneous blistering and the chronic course characteristic of the human condition. Adult mice were pre-immunized with rabbit IgG followed by injection of BP180/CXVII rabbit IgG. Mice pre-immunized against rabbit IgG and injected 6 times every second day with the BP180/CXVII-specific antibodies (n = 35) developed spontaneous sustained blistering of the skin, while mice pre-immunized and then treated with normal rabbit IgG (n = 5) did not. Blistering was associated with IgG and complement C3 deposits at the epidermal basement membrane and recruitment of inflammatory cells, and was partly dependent on Ly-6G-positive cells. We further used this new experimental model to investigate the therapeutic potential of luteolin, a plant flavonoid with potent anti-inflammatory and anti-oxidative properties and good safety profile, in experimental BP. Luteolin inhibited the Fcγ-dependent respiratory burst in immune complex-stimulated granulocytes and the autoantibody-induced dermal-epidermal separation in skin cryosections, but was not effective in suppressing the skin blistering in vivo. These studies establish a robust animal model that will be a useful tool for dissecting the mechanisms of blister formation and will facilitate the development of more effective therapeutic strategies for managing pemphigoid diseases
    • …
    corecore