32 research outputs found

    Field-scale labelling and activity quantification of methane-oxidizing bacteria in a landfill-cover soil

    Get PDF
    Aerobic methane-oxidizing bacteria (MOB) play an important role in soils, mitigating emissions of the greenhouse gas methane (CH4) to the atmosphere. Here, we combined stable isotope probing on MOB-specific phospholipid fatty acids (PLFA-SIP) with field-based gas push-pull tests (GPPTs). This novel approach (SIP-GPPT) was tested in a landfill-cover soil at four locations with different MOB activity. Potential oxidation rates derived from regular- and SIP-GPPTs agreed well and ranged from 0.2 to 52.8 mmol CH4 (L soil air)−1 day−1. PLFA profiles of soil extracts mainly contained C14 to C18 fatty acids (FAs), with a dominance of C16 FAs. Uptake of 13C into MOB biomass during SIP-GPPTs was clearly indicated by increased δ13C values (up to c. 1500‰) of MOB-characteristic FAs. In addition, 13C incorporation increased with CH4 oxidation rates. In general, FAs C14:0, C16:1ω8, C16:1ω7 and C16:1ω6 (type I MOB) showed highest 13C incorporation, while substantial 13C incorporation into FAs C18:1ω8 and C18:1ω7 (type II MOB) was only observed at high-activity locations. Our findings demonstrate the applicability of the SIP-GPPT approach for in situ quantification of potential CH4 oxidation rates and simultaneous labelling of active MOB, suggesting a dominance of type I MOB over type II MOB in the CH4-oxidizing community in this landfill-cover soi

    Meeting Minutes for October 13, 2016

    Get PDF
    Raw DICOM image files of CT-scanned termite mound Tp

    Technical Note: Disturbance of soil structure can lead to release of entrapped methane in glacier forefield soils

    No full text
    Investigations of sources and sinks of atmospheric CH4 are needed to understand the global CH4 cycle and climate-change mitigation options. Glaciated environments might play a critical role due to potential feedbacks with global glacial meltdown. In an emerging glacier forefield, an ecological shift occurs from an anoxic, potentially methanogenic subglacial sediment to an oxic proglacial soil, in which soil-microbial consumption of atmospheric CH4 is initiated. The development of this change in CH4 turnover can be quantified by soil-gas profile analysis. We found evidence for CH4 entrapped in glacier forefield soils when comparing two methods for the collection of soil-gas samples: a modified steel rod (SR) designed for one-time sampling and rapid screening (samples collected ∼1 min after hammering the SR into the soil), and a novel multilevel sampler (MLS) for repetitive sampling through a previously installed access tube (samples collected weeks after access-tube installation). In glacier forefields on siliceous bedrock, sub-atmospheric CH4 concentrations were observed with both methods. Conversely, elevated soil-CH4 concentrations were observed in calcareous glacier forefields, but only in samples collected with the SR, while MLS samples all showed sub-atmospheric CH4 concentrations. Time-series of SR soil-gas sampling (additional samples collected 2, 3, 5, and 7 min after hammering) confirmed the transient nature of the elevated soil-CH4 concentrations, which were decreasing from ∼100 μL L−1 towards background levels within minutes. This hints towards the existence of entrapped CH4 in calcareous glacier forefield soil that can be released when sampling soil-gas with the SR. Laboratory experiments with miniature soil cores collected from two glacier forefields confirmed CH4 entrapment in these soils. Treatment by sonication and acidification resulted in a massive release of CH4 from calcareous cores (on average 0.3–1.8 μg CH4 (g d.w.)−1) (d.w. – dry weight); release from siliceous cores was 1–2 orders of magnitude lower (0.02–0.03 μg CH4 (g d.w.)−1). Clearly, some form of CH4 entrapment exists in calcareous glacier forefield soils, and to a much lesser extent in siliceous glacier forefield soils. Its nature and origin remain unclear and will be subject of future investigations.ISSN:1726-4170ISSN:1726-417

    DICOM images termite mound Ms6

    No full text
    Raw DICOM image files of CT-scanned termite mound Ms

    Data from: Technical note: rapid image-based field methods improve the quantification of termite mound structures and greenhouse-gas fluxes

    No full text
    Termite mounds (TMs) mediate biogeochemical processes with global relevance, such as turnover of the important greenhouse gas methane (CH4). However, the complex internal and external morphology of TMs impede an accurate quantitative description. Here we present two novel field methods, photogrammetry (PG) and cross-section image analysis, to quantify TM external and internal mound structure of 29 TMs of three termite species. Photogrammetry was used to measure epigeal volume (VE), surface area (AE) and mound basal area (AB) by reconstructing 3D models from digital photographs, and compared against a water-displacement method and the conventional approach of approximating TMs by simple geometric shapes. To describe TM internal structure, we introduce TM macro- and micro-porosity (θM and θµ), the volume fractions of macroscopic chambers, and microscopic pores in the wall material, respectively. Macro-porosity was estimated using image analysis of single TM cross-sections, and compared against full x-ray tomography (CT) scans of 17 TMs. For these TMs we present complete pore fractions to assess species-specific differences in internal structure. The PG method yielded VE nearly identical to a water-displacement method, while approximation of TMs by simple geometric shapes led to errors of 4–200 %. Likewise, using PG substantially improved the accuracy of CH4 emission estimates by 10–50 %. Comprehensive CT scanning revealed that investigated TMs have species-specific ranges of θM and θµ, but similar total porosity. Image analysis of single TM cross-sections produced good estimates of θM for species with thick walls and evenly distributed chambers. The new image-based methods allow rapid and accurate quantitative characterisation of TMs to answer ecological, physiological and biogeochemical questions. The PG method should be applied when measuring greenhouse-gas emissions from TMs to avoid large errors from inadequate shape approximations
    corecore