9 research outputs found

    Oligomerization of ZFYVE27 (Protrudin) Is Necessary to Promote Neurite Extension

    Get PDF
    ZFYVE27 (Protrudin) was originally identified as an interacting partner of spastin, which is most frequently mutated in hereditary spastic paraplegia. ZFYVE27 is a novel member of FYVE family, which is implicated in the formation of neurite extensions by promoting directional membrane trafficking in neurons. Now, through a yeast two-hybrid screen, we have identified that ZFYVE27 interacts with itself and the core interaction region resides within the third hydrophobic region (HR3) of the protein. We confirmed the ZFYVE27's self-interaction in the mammalian cells by co-immunoprecipitation and co-localization studies. To decipher the oligomeric nature of ZFYVE27, we performed sucrose gradient centrifugation and showed that ZFYVE27 oligomerizes into dimer/tetramer forms. Sub-cellular fractionation and Triton X-114 membrane phase separation analysis indicated that ZFYVE27 is a peripheral membrane protein. Furthermore, ZFYVE27 also binds to phosphatidylinositol 3-phosphate lipid moiety. Interestingly, cells expressing ZFYVE27ΔHR3 failed to produce protrusions instead caused swelling of cell soma. When ZFYVE27ΔHR3 was co-expressed with wild-type ZFYVE27 (ZFYVE27WT), it exerted a dominant negative effect on ZFYVE27WT as the cells co-expressing both proteins were also unable to induce protrusions and showed cytoplasmic swelling. Altogether, it is evident that a functionally active form of oligomer is crucial for ZFYVE27 ability to promote neurite extensions

    The C-terminal domain is sufficient for endonuclease activity of Neisseria gonorrhoeae MutL

    No full text
    The mutL gene of Neisseria gonorrhoeae has been cloned and the gene product purified. We have found that the homodimeric N. gonorrhoeae MutL (NgoL) protein displays an endonuclease activity that incises covalently closed circular DNA in the presence of Mn2+, Mg2+ or Ca2+ ions, unlike human MutL alpha which shows endonuclease activity only in the presence of Mn2+. We report in the present paper that the C-terminal domain of N. gonorrhoeae MutL (NgoL-CTD) consisting of amino acids 460-658 exhibits Mn2+-dependent endonuclease activity. Sedimentation velocity, sedimentation equilibrium and dynamic light scattering experiments show NgoL-CTD to be a dimer. The probable endonucleolytic active site is localized to a metal-binding motif, DMHAX(2)EX(4)E, and the nicking endonuclease activity is dependent on the integrity of this motif. By in vitro comparison of wild-type and it mutant NgoL-CTD protein, we show that the latter protein exhibits highly reduced endonuclease activity. We therefore suggest that the mode of excision initiation in DNA mismatch repair may be different in organisms that lack MutH protein, but have MutL proteins that harbour the D[M/Q]HAX(2)EX(4)E motif

    HSV1 VP1-2 deubiquitinates STING to block type I interferon expression and promote brain infection

    No full text
    Herpes simplex virus (HSV) is the main cause of viral encephalitis in the Western world, and the type I interferon (IFN) system is important for antiviral control in the brain. Here, we have compared Ifnb induction in mixed murine brain cell cultures by a panel of HSV1 mutants, each devoid of one mechanism to counteract the IFN-stimulating cGAS–STING pathway. We found that a mutant lacking the deubiquitinase (DUB) activity of the VP1-2 protein induced particularly strong expression of Ifnb and IFN-stimulated genes. HSV1 ΔDUB also induced elevated IFN expression in murine and human microglia and exhibited reduced viral replication in the brain. This was associated with increased ubiquitination of STING and elevated phosphorylation of STING, TBK1, and IRF3. VP1-2 associated directly with STING, leading to its deubiquitination. Recruitment of VP1-2 to STING was dependent on K150 of STING, which was ubiquitinated by TRIM32. Thus, the DUB activity of HSV1 VP1-2 is a major viral immune-evasion mechanism in the brain

    Attenuation of cGAS-STING signaling is mediated by a p62/SQSTM1-dependent autophagy pathway activated by TBK1

    No full text
    Negative regulation of immune pathways is essential to achieve resolution of immune responses and to avoid excess inflammation. DNA stimulates type I IFN expression through the DNA sensor cGAS, the second messenger cGAMP, and the adaptor molecule STING. Here, we report that STING degradation following activation of the pathway occurs through autophagy and is mediated by p62/SQSTM1, which is phosphorylated by TBK1 to direct ubiquitinated STING to autophagosomes. Degradation of STING was impaired in p62-deficient cells, which responded with elevated IFN production to foreign DNA and DNA pathogens. In the absence of p62, STING failed to traffic to autophagy-associated vesicles. Thus, DNA sensing induces the cGAS-STING pathway to activate TBK1, which phosphorylates IRF3 to induce IFN expression, but also phosphorylates p62 to stimulate STING degradation and attenuation of the response
    corecore