15 research outputs found
Sobre la distinción y disponibilidad de los nuevos taxones propuestos por Agnolin et al. 2019
Sobre la distinción y disponibilidad de los nuevos taxones propuestos por Agnolin et al. 2019. Recientemente, Agnolin et al. (2019) describieron 14 especies nuevas de mamíferos, incluyendo 12 roedores, un murciélago y un carnívoro, y una nueva subespecie de roedor. Además, estos autores propusieron varios otros actos nomenclatoriales: algunas formas nominales se eliminaron de las sinonimias y se hipotetizaron como especies distintas; se nombraron tres nuevos géneros, una subtribu y una tribu demamíferos. Revisamos todos los actos nomenclatoriales propuestos por Agnolin et al. (2019) y concluimos que las 14 nuevas especies y la nueva subespecie, así como las formas eliminadas de las sinonimias, deben tratarse como sinónimos de especies ya conocidas. Sugerimos lo mismo con respecto a los tres nuevos taxones supraespecí cos presentados por Agnolin et al. (2019), de los cuales dos no están disponibles ya que no cumplen con las disposiciones del Código Internacional de Nomenclatura Zoológica. Terminamos esta contribución criticando la forma en que Agnolin et al. (2019) realizaron su abordaje taxonómico.Recently, Agnolin et al. (2019) described 14 new species of mammals, including 12 rodents,one bat, and one carnivore, and one new subspecies of rodent. In addition, these authors proposed severalother nomenclatorial acts: some nominal forms were removed from synonymies and hypothesized as distinctspecies, at the time that three new genera, one subtribe, and one tribe of mammals were also named. Wereviewed the merits of all nomenclatorial acts proposed by Agnolin at al. (2019) and concluded that all 14new species and the new subspecies, as well as those forms removed from synonymies, should be treatedas synonyms of already known species. We suggest the same regarding the three new supraspecic taxapresented by Agnolin et al., two of which are not available as they fail to comply with the provisions of theInternational Code of Zoological Nomenclature. We end this contribution criticizing the way that mammaltaxonomy was approached by Agnolin et al. (2019).Fil: Teta, Pablo Vicente. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Museo Argentino de Ciencias Naturales "Bernardino Rivadavia"; ArgentinaFil: D'elía, Guillermo. Universidad Austral de Chile; ChileFil: Jayat, Jorge Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico - Tucumán. Unidad Ejecutora Lillo; ArgentinaFil: Gonçalves, Pablo Rodrigues. Universidade Federal do Rio de Janeiro; BrasilFil: Simoes Libardi, Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Centro Nacional Patagónico. Instituto de Diversidad y Evolución Austral; Argentina. Universidade do Sao Paulo. Escola Superior de Agricultura Luiz de Queiroz; BrasilFil: Oliveira, João Alves de. Universidade Federal do Rio de Janeiro. Museu Nacional; BrasilFil: Moratelli, Ricardo. Fundación Oswaldo Cruz; BrasilFil: Reis Percequillo, Alexandre. Universidade do Sao Paulo. Escola Superior de Agricultura Luiz de Queiroz; BrasilFil: Prado, Joyce Rodrigues do. Universidade do Sao Paulo. Escola Superior de Agricultura Luiz de Queiroz; BrasilFil: Ortiz, Pablo Edmundo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Instituto Superior de Correlación Geológica. Universidad Nacional de Tucumán. Facultad de Ciencias Naturales e Instituto Miguel Lillo. Departamento de Geología. Cátedra Geología Estructural. Instituto Superior de Correlación Geológica; Argentina. Universidad Nacional de Tucumán. Facultad de Ciencias Naturales e Instituto Miguel Lillo. Instituto Miguel Lillo; ArgentinaFil: Hurtado, Natali. Universidad Nacional de San Agustin; PerúFil: Schiaffini, Mauro Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Centro de Investigación Esquel de Montaña y Estepa Patagónica. Universidad Nacional de la Patagonia "San Juan Bosco". Centro de Investigación Esquel de Montaña y Estepa Patagónica; Argentina. Universidad Nacional de la Patagonia "San Juan Bosco". Facultad de Ciencias Naturales - Sede Esquel. Laboratorio de Investigaciones en Evolución y Biodiversidad; ArgentinaFil: Abreu Jr., Edson Fiedler de. Universidade do Sao Paulo. Escola Superior de Agricultura Luiz de Queiroz; BrasilFil: Chiquito, Elisandra Almeida. Instituto Nacional da Mata Atlântica; BrasilFil: Giménez, Analía Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Centro de Investigación Esquel de Montaña y Estepa Patagónica. Universidad Nacional de la Patagonia "San Juan Bosco". Centro de Investigación Esquel de Montaña y Estepa Patagónica; Argentina. Universidad Nacional de la Patagonia "San Juan Bosco". Facultad de Ciencias Naturales - Sede Esquel. Laboratorio de Investigaciones en Evolución y Biodiversidad; ArgentinaFil: Torres, Julio. Instituto de Investigación Biológica del Paraguay; Paragua
Expert range maps of global mammal distributions harmonised to three taxonomic authorities
Aim: Comprehensive, global information on species' occurrences is an essential biodiversity variable and central to a range of applications in ecology, evolution, biogeography and conservation. Expert range maps often represent a species' only available distributional information and play an increasing role in conservation assessments and macroecology. We provide global range maps for the native ranges of all extant mammal species harmonised to the taxonomy of the Mammal Diversity Database (MDD) mobilised from two sources, the Handbook of the Mammals of the World (HMW) and the Illustrated Checklist of the Mammals of the World (CMW). Location: Global. Taxon: All extant mammal species. Methods: Range maps were digitally interpreted, georeferenced, error-checked and subsequently taxonomically aligned between the HMW (6253 species), the CMW (6431 species) and the MDD taxonomies (6362 species). Results: Range maps can be evaluated and visualised in an online map browser at Map of Life (mol.org) and accessed for individual or batch download for non-commercial use. Main conclusion: Expert maps of species' global distributions are limited in their spatial detail and temporal specificity, but form a useful basis for broad-scale characterizations and model-based integration with other data. We provide georeferenced range maps for the native ranges of all extant mammal species as shapefiles, with species-level metadata and source information packaged together in geodatabase format. Across the three taxonomic sources our maps entail, there are 1784 taxonomic name differences compared to the maps currently available on the IUCN Red List website. The expert maps provided here are harmonised to the MDD taxonomic authority and linked to a community of online tools that will enable transparent future updates and version control.Fil: Marsh, Charles J.. Yale University; Estados UnidosFil: Sica, Yanina. Yale University; Estados UnidosFil: Burguin, Connor. University of New Mexico; Estados UnidosFil: Dorman, Wendy A.. University of Yale; Estados UnidosFil: Anderson, Robert C.. University of Yale; Estados UnidosFil: del Toro Mijares, Isabel. University of Yale; Estados UnidosFil: Vigneron, Jessica G.. University of Yale; Estados UnidosFil: Barve, Vijay. University Of Florida. Florida Museum Of History; Estados UnidosFil: Dombrowik, Victoria L.. University of Yale; Estados UnidosFil: Duong, Michelle. University of Yale; Estados UnidosFil: Guralnick, Robert. University Of Florida. Florida Museum Of History; Estados UnidosFil: Hart, Julie A.. University of Yale; Estados UnidosFil: Maypole, J. Krish. University of Yale; Estados UnidosFil: McCall, Kira. University of Yale; Estados UnidosFil: Ranipeta, Ajay. University of Yale; Estados UnidosFil: Schuerkmann, Anna. University of Yale; Estados UnidosFil: Torselli, Michael A.. University of Yale; Estados UnidosFil: Lacher, Thomas. Texas A&M University; Estados UnidosFil: Wilson, Don E.. National Museum of Natural History; Estados UnidosFil: Abba, Agustin Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Estudios Parasitológicos y de Vectores. Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo. Centro de Estudios Parasitológicos y de Vectores; ArgentinaFil: Aguirre, Luis F.. Universidad Mayor de San Simón; BoliviaFil: Arroyo Cabrales, Joaquín. Instituto Nacional de Antropología E Historia, Mexico; MéxicoFil: Astúa, Diego. Universidade Federal de Pernambuco; BrasilFil: Baker, Andrew M.. Queensland University of Technology; Australia. Queensland Museum; AustraliaFil: Braulik, Gill. University of St. Andrews; Reino UnidoFil: Braun, Janet K.. Oklahoma State University; Estados UnidosFil: Brito, Jorge. Instituto Nacional de Biodiversidad; EcuadorFil: Busher, Peter E.. Boston University; Estados UnidosFil: Burneo, Santiago F.. Pontificia Universidad Católica del Ecuador; EcuadorFil: Camacho, M. Alejandra. Pontificia Universidad Católica del Ecuador; EcuadorFil: de Almeida Chiquito, Elisandra. Universidade Federal do Espírito Santo; BrasilFil: Cook, Joseph A.. University of New Mexico; Estados UnidosFil: Cuéllar Soto, Erika. Sultan Qaboos University; OmánFil: Davenport, Tim R. B.. Wildlife Conservation Society; TanzaniaFil: Denys, Christiane. Muséum National d'Histoire Naturelle; FranciaFil: Dickman, Christopher R.. The University Of Sydney; AustraliaFil: Eldridge, Mark D. B.. Australian Museum; AustraliaFil: Fernandez Duque, Eduardo. University of Yale; Estados UnidosFil: Francis, Charles M.. Environment And Climate Change Canada; CanadáFil: Frankham, Greta. Australian Museum; AustraliaFil: Freitas, Thales. Universidade Federal do Rio Grande do Sul; BrasilFil: Friend, J. Anthony. Conservation And Attractions; AustraliaFil: Giannini, Norberto Pedro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico - Tucumán. Unidad Ejecutora Lillo; ArgentinaFil: Gursky-Doyen, Sharon. Texas A&M University; Estados UnidosFil: Hackländer, Klaus. Universitat Fur Bodenkultur Wien; AustriaFil: Hawkins, Melissa. National Museum of Natural History; Estados UnidosFil: Helgen, Kristofer M.. Australian Museum; AustraliaFil: Heritage, Steven. University of Duke; Estados UnidosFil: Hinckley, Arlo. Consejo Superior de Investigaciones Científicas. Estación Biológica de Doñana; EspañaFil: Holden, Mary. American Museum of Natural History; Estados UnidosFil: Holekamp, Kay E.. Michigan State University; Estados UnidosFil: Humle, Tatyana. University Of Kent; Reino UnidoFil: Ibáñez Ulargui, Carlos. Consejo Superior de Investigaciones Científicas. Estación Biológica de Doñana; EspañaFil: Jackson, Stephen M.. Australian Museum; AustraliaFil: Janecka, Mary. University of Pittsburgh at Johnstown; Estados Unidos. University of Pittsburgh; Estados UnidosFil: Jenkins, Paula. Natural History Museum; Reino UnidoFil: Juste, Javier. Consejo Superior de Investigaciones Científicas. Estación Biológica de Doñana; EspañaFil: Leite, Yuri L. R.. Universidade Federal do Espírito Santo; BrasilFil: Novaes, Roberto Leonan M.. Universidade Federal do Rio de Janeiro; BrasilFil: Lim, Burton K.. Royal Ontario Museum; CanadáFil: Maisels, Fiona G.. Wildlife Conservation Society; Estados UnidosFil: Mares, Michael A.. Oklahoma State University; Estados UnidosFil: Marsh, Helene. James Cook University; AustraliaFil: Mattioli, Stefano. Università degli Studi di Siena; ItaliaFil: Morton, F. Blake. University of Hull; Reino UnidoFil: Ojeda, Agustina Alejandra. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Argentino de Investigaciones de las Zonas Áridas. Provincia de Mendoza. Instituto Argentino de Investigaciones de las Zonas Áridas. Universidad Nacional de Cuyo. Instituto Argentino de Investigaciones de las Zonas Áridas; ArgentinaFil: Ordóñez Garza, Nicté. Instituto Nacional de Biodiversidad; EcuadorFil: Pardiñas, Ulises Francisco J.. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Centro Nacional Patagónico. Instituto de Diversidad y Evolución Austral; ArgentinaFil: Pavan, Mariana. Universidade de Sao Paulo; BrasilFil: Riley, Erin P.. San Diego State University; Estados UnidosFil: Rubenstein, Daniel I.. University of Princeton; Estados UnidosFil: Ruelas, Dennisse. Museo de Historia Natural, Lima; PerúFil: Schai-Braun, Stéphanie. Universitat Fur Bodenkultur Wien; AustriaFil: Schank, Cody J.. University of Texas at Austin; Estados UnidosFil: Shenbrot, Georgy. Ben Gurion University of the Negev; IsraelFil: Solari, Sergio. Universidad de Antioquia; ColombiaFil: Superina, Mariella. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto de Medicina y Biología Experimental de Cuyo; ArgentinaFil: Tsang, Susan. American Museum of Natural History; Estados UnidosFil: Van Cakenberghe, Victor. Universiteit Antwerp; BélgicaFil: Veron, Geraldine. Université Pierre et Marie Curie; FranciaFil: Wallis, Janette. Kasokwa-kityedo Forest Project; UgandaFil: Whittaker, Danielle. Michigan State University; Estados UnidosFil: Wells, Rod. Flinders University.; AustraliaFil: Wittemyer, George. State University of Colorado - Fort Collins; Estados UnidosFil: Woinarski, John. Charles Darwin University; AustraliaFil: Upham, Nathan S.. University of Yale; Estados UnidosFil: Jetz, Walter. University of Yale; Estados Unido
Expert range maps of global mammal distributions harmonised to three taxonomic authorities
AimComprehensive, global information on species' occurrences is an essential biodiversity variable and central to a range of applications in ecology, evolution, biogeography and conservation. Expert range maps often represent a species' only available distributional information and play an increasing role in conservation assessments and macroecology. We provide global range maps for the native ranges of all extant mammal species harmonised to the taxonomy of the Mammal Diversity Database (MDD) mobilised from two sources, the Handbook of the Mammals of the World (HMW) and the Illustrated Checklist of the Mammals of the World (CMW).LocationGlobal.TaxonAll extant mammal species.MethodsRange maps were digitally interpreted, georeferenced, error-checked and subsequently taxonomically aligned between the HMW (6253 species), the CMW (6431 species) and the MDD taxonomies (6362 species).ResultsRange maps can be evaluated and visualised in an online map browser at Map of Life (mol.org) and accessed for individual or batch download for non-commercial use.Main conclusionExpert maps of species' global distributions are limited in their spatial detail and temporal specificity, but form a useful basis for broad-scale characterizations and model-based integration with other data. We provide georeferenced range maps for the native ranges of all extant mammal species as shapefiles, with species-level metadata and source information packaged together in geodatabase format. Across the three taxonomic sources our maps entail, there are 1784 taxonomic name differences compared to the maps currently available on the IUCN Red List website. The expert maps provided here are harmonised to the MDD taxonomic authority and linked to a community of online tools that will enable transparent future updates and version control
Catálogo Taxonômico da Fauna do Brasil: setting the baseline knowledge on the animal diversity in Brazil
The limited temporal completeness and taxonomic accuracy of species lists, made available in a traditional manner in scientific publications, has always represented a problem. These lists are invariably limited to a few taxonomic groups and do not represent up-to-date knowledge of all species and classifications. In this context, the Brazilian megadiverse fauna is no exception, and the Catálogo Taxonômico da Fauna do Brasil (CTFB) (http://fauna.jbrj.gov.br/), made public in 2015, represents a database on biodiversity anchored on a list of valid and expertly recognized scientific names of animals in Brazil. The CTFB is updated in near real time by a team of more than 800 specialists. By January 1, 2024, the CTFB compiled 133,691 nominal species, with 125,138 that were considered valid. Most of the valid species were arthropods (82.3%, with more than 102,000 species) and chordates (7.69%, with over 11,000 species). These taxa were followed by a cluster composed of Mollusca (3,567 species), Platyhelminthes (2,292 species), Annelida (1,833 species), and Nematoda (1,447 species). All remaining groups had less than 1,000 species reported in Brazil, with Cnidaria (831 species), Porifera (628 species), Rotifera (606 species), and Bryozoa (520 species) representing those with more than 500 species. Analysis of the CTFB database can facilitate and direct efforts towards the discovery of new species in Brazil, but it is also fundamental in providing the best available list of valid nominal species to users, including those in science, health, conservation efforts, and any initiative involving animals. The importance of the CTFB is evidenced by the elevated number of citations in the scientific literature in diverse areas of biology, law, anthropology, education, forensic science, and veterinary science, among others
Systematics of the genus Nectomys Peters, 1860 (Cricetidae, Sigmodontinae)
A tribo Oryzomyini abriga 34 dos 86 gêneros sigmodontíneos e apresenta ampla distribuição geográfica, ocorrendo em diversos habitats desde a Terra do Fogo ao sudeste dos Estados Unidos; com representantes cursoriais, arborícolas ou ainda semi-aquáticos, e com diferentes hábitos alimentares, variando de onívoros a insetívoros. Estudos sistemáticos nessa tribo têm sido desenvolvidos com base em dados de morfologia, morfometria, informações citogenéticas e moleculares, o que vêm contribuindo para o reconhecimento de novos táxons. No entanto, a última revisão taxonômica publicada para o gênero Nectomys data da década de 1940, na qual foi reconhecida apenas uma espécie com diversas subespécies, o que aumentou substancialmente a quantidade de nomes associados ao gênero. Diante disso, o cerne desse estudo foi testar a hipótese levantada por Hershkovitz de que Nectomys é representado por apenas uma espécie com ampla distribuição geográfica pela América do Sul. Para testar essa hipótese, reuni informações acerca dos táxons nominais e empreguei análises de variação geográfica com base na metodologia de transectos, tendo como unidades geográficas as bacias hidrográficas da América do Sul. Para isso, apliquei análises univariadas e multivariadas para dados quantitativos, e frequência de caracteres para dados qualitativos. Os resultados apontaram que o gênero Nectomys é composto por oito entidades, assim nomeadas e distribuídas: N. apicalis, encosta oriental da Cordilheira dos Andes do sul do Peru até o norte da Colômbia, no extremo oeste do Estado do Amazonas, no Brasil; N. magdalenae, ao longo do vale do rio Magdalena e ao norte do vale do rio Cauca, no oeste da Colômbia; N. palmipes, Trinidad e Tobago e nordeste da Venezuela; N. rattus, porção norte e central do Brasil, ao norte da bacia do rio Paraná e a oeste do rio São Francisco, Guiana, Suriname, Guiana Francesa, Venezuela (exceto Península de Paria), e rios Ucayali e Huallaga no Peru; N. saturatus, Ibarra, Equador; N. squamipes, Floresta Atlântica, desde Pernambuco até o Rio Grande do Sul, nos Estados de Minas Gerais e na porção leste do Mato Grosso do Sul, Paraguai e na Província de Misiones, na Argentina; Nectomys sp. A, noroeste da Bolívia, encosta oriental da Cordilheira do Andes; e Nectomys sp. B., Amazônia ocidental, nos rios Purus, Juruá e Javari. As análises que conduzi me permitiram estabelecer que a variação morfológica e citogenética não é aleatória: encontrei descontinuidades nítidas entre amostras ao longo da geografia, e com base no conceito de espécie por mim adotado, estabeleço que estas entidades representam oito espécies distintas.The tribe Oryzomyini holds 34 of 86 sigmodontine genera and presents a wide geographic distribution, occurring in several habitats from Tierra del Fuego to southeast United States ; it includes cursorial, arboreal and semi-acquatic species with distinct food habits, ranging from omnivorous to insectivorous. Systematic studies in Oryzomyini have been based on morphological and morphometric data, as well cytogenetic and molecular information, which is contributing to recognition of new taxa. However, the latest published taxonomic review of the genus Nectomys date from 1940, where was recognized only one species with several subespecies, what increased substantially the amount of names related to the genus. In this way, the main goal of this study was to test the Hershkovitz\'s hypothesis that Nectomys is represented by only one species widely distributed through South America. To test this hypothesis, I gathered information about the nominal taxa and I employed geographical variation analysis based on the transect method, for what I used the South America river basins as a geographic units. To do so, I applied univariated and multivariated analysis for the quantitative data, and character frequency for the qualitative data. The results suggest the genus Nectomys is composed by eight species, which are so named and distributed: N. apicalis, Andean eastern slope, from southern Peru to northern Colombia, and westernmost Amazonas state, in Brazil; N. magdalenae, through Magdalena and Cauca valleys, in Colombia; N. palmipes, Trinidad and Tobago, and northeast Venezuela; N. rattus, central and north region in Brazil, Guyana, Suriname, and French Guyana, Venezuela (except Paria peninsula), and Ucayali and Huallaga rivers in Peru; N. saturatus, Ibarra, Ecuador; N. squamipes, Atlantic Forest, from Pernambuco to Rio Grande do Sul, Minas Gerais and eastern Mato Grosso do Sul in Brazil, Paraguay, and Misiones province, Argentina; Nectomys sp. A, northwestern Bolivia, in the eastern Andean slope; and Nectomys sp. B., western Amazônia, in Purus, Juruá, and Javari rivers. The analysis conducted allowed me to establish that the cytogenetic and morphologic variation is not random: I found marked discontinuities among samples through the geography, and based on the species concept I adopted, I establish that these entities represent eight distinct species
Geographic variation and phylogeography of Sooretamys angouya (Fisher,1814) (Rodentia, Cricetidae)
Estudos taxonômicos e sistemáticos têm freqüentemente utilizado mais de uma ferramenta a fim de acessar, além da biodiversidade, a história evolutiva e biogeográfica. Comumente, o que temos são abordagens morfológicas e moleculares unidas, muitas vezes, corroborando uma a outra, resultando no reconhecimento de novos táxons de Oryzomyini, inclusive supraespecíficos, e nos seus padrões filogenéticos. Inserido nesse cenário, S. angouya já foi alvo de estudos taxonômicos e biogeográficos, no entanto, a vasta distribuição geográfica e a amplitude de habitats que S. angouya ocupa sugerem a possibilidade de existência de algum grau de variação intraespecífica, o que torna a espécie um ótimo modelo para um estudo de variação geográfica e filogeográfica. Meu objetivo foianalisar qualitativa e quantitativamente as amostras de S. angouya ao longo da sua distribuição a fim de avaliar a existência de variação em nível morfológico e molecular. A metodologia de agrupamentos de localidades próximas e/ou pertencentes a uma mesma unidade geográfica foi empregada a fim de incrementar o número amostral. As análises morfométricas e morfológicas foram conduzidas em indivíduos adultos de acordo com o desgaste dos molares e de ambos os sexos. Os caracteres morfométricos consistiram em cinco dimensões corpóreas e 18 crânio-dentárias. As normalidades uni e multivariada dos dados foram testadas através dos testes de Kolmogorov-Smirnov e Kurtose de Mardia, respectivamente. A análise de variação geográfica baseou-se em diagramas Dice-Leraas e Análises Discriminantes. A análise qualitativa da morfologia foi realizada com base em caracteres de pelagem e crânio-dentários. As análises moleculares foram conduzidas com um fragmento de 675 pb do gene mitocondrial do Citocromo b de 48 indivíduos. As árvores foram construídas pelos métodos de Máxima Verossimilhança, Máxima Parcimônia e Neighbour- Joining. Foi também conduzida uma análise da rede de haplótipos e calculadas as estatísticas básicas. A distribuição geográfica de S. angouya é limitada pelas localidades Conceição do Mato Dentro, MG, ao norte; Arroio Grande, RS, ao sul; Venda Nova, ES, a leste e Isla El Chapetón, no Rio Paraná em Entre Ríos, Argentina, abrangendo toda a região costeira do Espírito Santo ao Rio Grande do Sul e adentrando ao interior. As análises morfométricas mostraram que existe uma discreta diminuição nos valores médios do comprimento craniano e corpóreo no sentido norte-sul e mais acentuada no sentido leste-oeste. No entanto, a amostra proveniente do Paraguai, extremo oeste da distribuição, apresenta crânios tão longos, porém mais robustos, e dimensões corpóreas maiores que a amostra de Boracéia e Casa Grande, em SP. Qualitativamente, aspectos crâniodentários e corpóreos não exibiram variação relacionada com a geografia, embora variem dentro da espécie. Foi obtido um alinhamento de 675 pb do Cit b de 48 indivíduos de S. angouya provenientes de ES, RJ, SC, RS e Paraguai. As quatro análises de variação molecular conduzidas não mostraram haver uma clara estruturação geográfica dos haplótipos, exceto por um subclado suportado por altos valores de bootstrap onde estão contidos quatro haplótipos exclusivamente paraguaios, da região da bacia do rio Tebicuary. Concluiu-se que existe variação geográfica em S. angouya e que esta pode ter sido gerada por eventos recentes.Taxonomic and systematic studies have often used more than one tool to recover information on biodiversity, but also on the biogeography and evolutionary history. Commonly, morphological and molecular approaches are used together, sometimes corroborating each other, resulting in the recognition of new Oryzomyini taxa, including supraespecifics level, throughout phylogenetic patterns. Sooretamys angouya exhibits a wide geographic distribution and occupy a large range of habitats, which suggests the possibility of some degree of intraspecific variation, which makes the species an excellent model for geographic variation and phylogeographic studies. The goal of this study was to analyze qualitatively and quantitatively the samples of S. angouya throughout its distribution, and to evaluate the existence of variation in morphological and molecular level. I pooled nearby localities and / or those localities included in a single geographic in order to increase the sample size. The morphological and morphometric analysis were conducted on adults males and females, according to the patterns of molar wear. The morphometric characters employed were five external body measurement from museum labels and 18 cranial and tooth measurements. The univariate and multivariate normality of data were tested using the Kolmogorov-Smirnov and Mardia\'s kurtosis tests, respectively. The analysis of geographic variation was based on Dice-Leraas diagrams and Discriminant Analysis. The qualitative analysis of morphology was based on characters of pelage and skull-dental. Molecular analysis was conducted with a fragment of 675 bp of mitochondrial cytochrome b gene of 48 individuals. The trees were constructed by the methods of Maximum Likelihood, Maximum Parsimony and Neighbour-Joining. It has also conducted a network analysis of haplotypes and calculated basic statistics. The geographical distribution of S. angouya is limited by the localities Conceição do Mato Dentro, Minas Gerais, north, Arroyo Grande, RS, south, Venda Nova, ES, east and Isla El Chapetón, Rio Parana in Entre Rios, Argentina, covering the entire coastal region of Espírito Santo to Rio Grande do Sul and into the interior. Morphometric analysis showed that there is a slight reduction in mean body length and head north to the south and steeper in the eastwest. However, the sample from Paraguay, the westernmost collection localities, exhibit long and robust skulls, apparently larger than the sample Boracéia- Casa Grande, SP. Qualitatively, dental and cranial features exhibited no tangible variation linked to geography, although they vary within species. We obtained an alignment of 675 bp of Cyt b from 48 individuals of S. angouya from ES, RJ, SC, Brazil and Paraguay. The four molecular analysis of variance conducted have not shown a clear geographic structure of haplotypes, except for one subclade supported by high bootstrap values which are contained only four haplotypes Paraguayans, the region\'s river basin Tebicuary. It was concluded that there is geographic variation in S. angouya and that this may have been generated by recent events
Nectomys saturatus Thomas 1897
<i>Nectomys saturatus</i> Thomas, 1897 <p> <i>Nectomys saturatus</i> Thomas, 1897a:546. Type locality “Ibarra, N. Ecuador, alt. 2225 metres.”</p> <p> <i>Nectomys squamipes saturatus</i>: Hershkovitz, 1948:51. Name combination.</p> <p> <i>Nectomys apicalis</i>: Musser & Carleton, 2005: 1132. part.</p> <p> <b>Holotype</b>: BMNH 97.11.7.40, a sub-adult male collected by W. F. H. Rosenberg in May 19, 1894 under field number WR90, preserved in skin and skull at The Natural History Museum, London. The skin is well preserved, with the right pinnae with the top broken, the dorsum of the right forefeet damaged, and the tail screwed up in the proximal part and lacking the apical end. The skull and mandibles are also well preserved, with the anterior part of the nasals broken, the left lacrimal is broken, the hemimandibles were separated and glued posteriorly, the angular process and inferior notch are broken in the both hemimandibles, and the right coronoid process broken.</p> <p> <b>Paratype</b>: BMNH 3.1.8.3, a sub-adult female collected by W.F. H. Rosenberg in May 19, 1894</p> <p> <b>Type locality</b>: “Ibarra, N. Ecuador, alt. 2225 metres”, 00° 21’ N; 78° 07’ W (Payter JR, 1993). Ibarra is located in northern Ecuador, at the Ibarra Inter-Andean Basin, where vegetation is characterized by Forest and semideciduous bushland north of the Valles (Aguirre & Medina-Torres, 2013). According to holotype label, the specimen was “caught in meadow close to city”, and its “native name [is] Piza”.</p> <p> <b>Distribution</b>: This species is known only for the type locality.</p> <p> <b>Diagnosis</b>: Mystacial vibrissae long, surpassing the pinnae when laid back; ventral keel of the tail composed only by white hairs; ungual tufts of pes white; hypothenar pad small and fleshy; rostrum very robust (long and wide); interorbital region with supraorbital margins tending to be parallel-sided; interparietal semicircle shaped; molar series very long (8.42 – 8.55 mm); M1 with distinct paralophule.</p> <p> <b>Morphological description</b>: Head and body large and robust (table 1, figure 6); tail length longer than head and body (105%–116% of head and body length; table1); hindfeet long and robust (26% of head and body length; table 1); pinnae rounded and small (10%–11% of head and body length; table 1). Dorsal pelage long, soft and dense, consisting of short and dense underfur (wool hairs; thin, wavy, short; range 10–11 mm) and longer and lax overfur (guard and cover hairs; thick, long; cover hairs long, range: 13–14 mm; guard hairs sparse and long, range: 19–20 mm). Dorsal body color dark grayish brown finely grizzled with pale yellow. Flanks brown grizzled with pale yellow. Ventral color dark gray orangish, slightly grizzled, and subtly lighter than dorsal pelage. Mystacial vibrissae entirely black, long, surpassing pinnae when laid back. Tail slightly bicolored, covered with brown and short hairs on dorsal surface, and white and long hairs on ventral surface, forming a distinct white ventral keel on the tail; tail scales larger and squares, with about 12 scales/centimeter. Dorsal surface of hind feet gray, covered with short hairs with ½ distal portion white and basal ½ brown; ungual tufts white, absent on digit I and shorter than claws on digits II to V; interdigital webbing present; natatory fringes present on the external lateral margins of pes; ventral surface naked with evident scales, unpigmented, with four small interdigital pads and two tarsal pads (thenar and hypothenar).</p> <p>Skull large, heavy and robust (table 2; figure 7). Rostrum long, broad, tapering anteriorly, with inflated capsular projection of nasolacrimal foramen; rostrum flanked by wide and moderately deeply excavated zygomatic notches; lacrimal small, mainly contacting the maxillary; interobital region wide, almost parallel sided, with dorsolateral margins with well-developed supraorbital crests, which do not reach the frontal/parietal suture; parietal expanded laterally, with a crest in the suture with squamosal; braincase elongated; interparietal long and wide, semicircle shaped. Zygomatic plate (in lateral view) slightly projected forward, with dorsal free margin straight and anterior margin also straight, inclined anteriorly; zygomatic spine absent. Zygomatic arch robust; jugal welldeveloped. Posglenoid foramen small and narrow; tegmen tympani laminar, do not reach the squamosal; hamular process of squamosal wide and robus, defining a small subsquamosal fenestra; mastoid small and compressed antero-posteriorly, without fenestra. Incisive foramina medium sized, occupying about 64% of length of diastema (table 2), with lateral margins slightly concave and diverging posteriorly, wider posteriorly; posterior margins do not reach the alveolus of M1. Palate long and wide (sensu Hershkovitz, 1962); posterolateral palatal pits numerous and complex, recessed in moderately deep palatal fossae; mesopterygoid fossa wide, with anterior margin squared with a medial notch, reaching the maxillary, but not the alveolus of M3; roof of mesopterygoid fossa perforated by small and narrow sphenopalatine vacuities. Parapterygoid plates wide and robust; posterior opening of alisphenoid canal wide; foramen lacerum medium narrow. Auditory bullae moderately inflated, with Eustachian tube short and wide. Mandible long and deep (figure 7); coronoid process large, triangular; superior notch deep; angular process short, not surpassing the condyloid process posteriorly; inferior notch shallow; capsular process of lower incisor as a small and rounded process.</p> <p>Upper incisors opisthodont. Molar series (figures 7 and 8) slightly divergent; labial and lingual cusps arranged in opposite pairs; labial flexi, paraflexus and metaflexus, and lingual flexi, protoflexus and hypoflexus, overlap in the median line of the molars; paraflexus and metaflexus oriented obliquely posteriorly. Upper molar range 8.42– 8.55 mm, M1 width range 2.31–2.54 mm.</p> <p>Anterocone of M1 not divided by the anteromedian flexus, anterocone slightly divided by a shallow and discrete medial valley; anterocone connected posteromedially by the anterior mure and connected postero-labially to the anteroloph by anterostyle; anterostyle well developed. Anteroloph posterior and parallel to anterocone, connected medially to anterior mure. Paracone connected antero-medially by a transversal ridge to protocone and to the median mure, forming a long paraflexus, and connected postero-labially to mesoloph by the mesostyle, mesostyle well developed. Protocone connected anteriorly to anterior mure ans apart from anterocone by protoflexus and from paracone by paraflexus. Mesoloph long, connected medially to median mure and labially to mesostyle; mesoloph separated from paracone by mesoflexus and from metacone by metaflexus; when worn, mesoloph fuses to paracone forming a long and distinct mesofossete. Metacone joining hypocone anteromedially, forming a long metaflexus (or metafosset), and joining posteroloph medially, defining a small posteroflexus (or posterofosset). Hypocone connected anteriorly to median mure and separated from protocone by hipoflexus and from metacone by metaflexus; hypocone connected postero-medially to posteroloph, reaching up to the labial margin of the molar. Posteroloph long. M2 resembling M1, but without anterocone; anteroloph present (unique structure remaining of procingulum). Anteroloph connected anteriorly to protocone, anterior mure absent. M3 with distinct anteroloph, connected to protocone antero-medially. Anterolingual cíngulum absent. Paracone connected antero-medially to protocone and median mure, forming the paraflexus; paracone connected to protocone by median mure, forming medial parafosset. Mesoloph fused to median mure and to paracone. Metacone reduced. Hypocone reduced, hypocone apart from protocone by hypoflexus well excavated. Posteroloph reduced, connected to hypocone.</p> <p>Lower incisors narrow and long. Lower molar (figure 8) series with lingual and labial cusps positioned in opposing pairs. Anteroconid of m1 undivided by anteromedian flexid, anterior margin of anteroconid rounded. Anterolophid parallel to anteroconid and separated from this by anteroflexid. Anterolabial cingulum well developed, connected to anterior murid. Metaconid and protoconid joined antero-medially to anterior murid; metaconid apart from anterolophid by short metaflexid, and apart from anterolophid by long mesoflexid; metaconid connected to anterolophid. Protoconid separated from anterolabial cingulum by shallow protoflexíd, and from hypoconid by wide and deep hypoflexid; ectostylid absent. Mesolophid connected to median murid and apart from metaconid by deep mesoflexid and joined to entoconid on lingual surface, entofossetid small. Entoconid and hypoconid connecting antero-medially to median murid, and apart by deep posteroflexid. Posterolophid starts from posterior end of hypoconid, and extend to lingual margin of the molar. m2 resembling m1; anteroconid and anterolophid absent. m3 resembling m 2 in size. Anterolabial cingulum present; metaconid and protoconid distinct, apart by mesoflexid; enamel island positioned medially to the hypoconid, possibly remaining from posteroflexid (posterofossetid).</p> <p> <b>Karyology:</b> There is no information about diploid or fundamental number for this species.</p>Published as part of <i>Chiquito, Elisandra Almeida & Percequillo, Alexandre Reis, 2019, The taxonomic status of Nectomys saturatus Thomas, 1897 (Cricetidae: Sigmodontinae), pp. 321-339 in Zootaxa 4550 (3)</i> on pages 327-330, DOI: 10.11646/zootaxa.4550.3.2, <a href="http://zenodo.org/record/2625444">http://zenodo.org/record/2625444</a>
The taxonomic status of Nectomys saturatus Thomas, 1897 (Cricetidae: Sigmodontinae)
Chiquito, Elisandra Almeida, Percequillo, Alexandre Reis (2019): The taxonomic status of Nectomys saturatus Thomas, 1897 (Cricetidae: Sigmodontinae). Zootaxa 4550 (3): 321-339, DOI: https://doi.org/10.11646/zootaxa.4550.3.
How many species of mammals are there in Brazil? New records of rare rodents (Rodentia: Cricetidae: Sigmodontinae) from Amazonia raise the current known diversity
Background Since 1996, when Vivo questioned how many species of mammals occur in Brazil, there has been a huge effort to assess this biodiversity. In this contribution, we present new records for rare species of the sigmodontine rodent genera Rhagomys and Neusticomys previously unknown to Brazilian Amazon. We provided detailed information on the morphologic variation to allow the proper identification of these species. We also furnished updated information on their collection, aiming to establish hypothesis of their geographic distribution, based on SDM’s, aiming to hypothesize potential occurrence areas for these species. Methods Rodent specimens were sampled in separate inventories in two sites of Rondônia State (Hydroelectric Dam Jirau and Parque Nacional de Pacaás Novos) and one site in Pará State (Pacajá), Brazil, and were compared to specimens from museum collections to apply appropriate names. The SDM were conducted using two algorithms for rare species, MaxEnt and randomForest (RF), and were based on seven localities for Rhagomys, and 10 for Neusticomys. Results All specimens were collected with pitfall traps. One specimen of genus Rhagomys was trapped in the Hydroelectric Dam Jirau. We identified this specimen as R. longilingua, and the SDM species indicates suitable areas for its occurrence at high elevations near on the Andes and lowlands of Amazon Basin to the South of the Rio Amazonas. Two specimens of Neusticomys were recorded, and we identified the specimen from Pacaás Novos as N. peruviensis, with SDM suggesting main areas of occurrence on Western Amazon. We applied the name N. ferreirai to the specimen from Pacajá, with SDM recovering suitable areas in Eastern Amazon. Discussion We reinforced the importance of pitfall traps on the study of Neotropical rodents. We described morphologic variation within and among all species that do not invalidate their specific status, but in the near future a re-evaluation will be mandatory. The new records extended the species distribution considerably. SDM was successful to predict their distributions, as the two algorithms presented important differences in range size recovered by the models that can be explained by differences in the thresholds used for the construction of the models. Most suitable areas coincide with the areas facing most of the deforestation in Amazon. We added two rare species of sigmodontine rodents to the list of Brazilian Mammals, which now comprises 722 species (or 775 valid nominal taxa). Although more information is available than in 1996, it is essential that mammal experts maintain inventory and revisionary programs to update and revise this information. This is even more important, as changes in Brazilian environmental legislation are being discussed, suggesting reduced need for environmental impact reports prior to beginning commercial enterprises, resulting in the loss of information about native biodiversity in the affected areas