401 research outputs found

    Impact of deep convection and dehydration on bromine loading in the upper troposphere and lower stratosphere

    Get PDF
    Stratospheric bromine loading due to very short-lived substances is investigated with a three-dimensional chemical transport model over a period of 21 years using meteorological input data from the European Centre for Medium-Range Weather Forecasts ERA-Interim reanalysis from 1989 to the end of 2009. Within this framework we analyze the impact of dehydration and deep convection on the amount of stratospheric bromine using an idealized and a detailed full chemistry approach. We model the two most important brominated short-lived substances, bromoform (CHBr<sub>3</sub>) and dibromomethane (CH<sub>2</sub>Br<sub>2</sub>), assuming a uniform convective detrainment mixing ratio of 1 part per trillion by volume (pptv) for both species. The contribution of very short-lived substances to stratospheric bromine varies drastically with the applied dehydration mechanism and the associated scavenging of soluble species ranging from 3.4 pptv in the idealized setup up to 5 pptv using the full chemistry scheme. In the latter case virtually the entire amount of bromine originating from very short-lived source gases is able to reach the stratosphere thus rendering the impact of dehydration and scavenging on inorganic bromine in the tropopause insignificant. Furthermore, our long-term calculations show that the mixing ratios of very short-lived substances are strongly correlated to convective activity, i.e. intensified convection leads to higher amounts of very short-lived substances in the upper troposphere/lower stratosphere especially under extreme conditions like El Niño seasons. However, this does not apply to the inorganic brominated product gases whose concentrations are anti-correlated to convective activity mainly due to convective dilution and possible scavenging, depending on the applied approach

    The contribution of anthropogenic bromine emissions to past stratospheric ozone trends: a modelling study

    No full text
    International audienceBromine compounds play an important role in the depletion of stratospheric ozone. We have calculated the changes in stratospheric ozone in response to changes in the halogen loading over the past decades, using a two-dimensional (latitude/height) model constrained by source gas mixing ratios at the surface. Model calculations of the decrease of total column ozone since 1980 agree reasonably well with observed ozone trends, in particular when the contribution from very short-lived bromine compounds is included. Model calculations with bromine source gas mixing ratios fixed at 1959 levels, corresponding approximately to a situation with no anthropogenic bromine emissions, show an ozone column reduction between 1980 and 2005 at northern hemisphere mid-latitudes of only ?55% compared to a model run including all halogen source gases. In this sense anthropogenic bromine emissions are responsible for ?45% of the model estimated column ozone loss at northern hemisphere mid-latitudes. The chemical efficiency of bromine relative to chlorine for global total ozone depletion from our model calculations, expressed by the so called ?-factor, is about 73 on an annual average. This value is much higher than previously published results. Updates in reaction rate constants can explain only part of the differences in ?. The inclusion of bromine from very short-lived source gases has only a minor effect on the global mean ?-factor

    The contribution of anthropogenic bromine emissions to past stratospheric ozone trends: a modelling study

    Get PDF
    Bromine compounds play an important role in the depletion of stratospheric ozone. We have calculated the changes in stratospheric ozone in response to changes in the halogen loading over the past decades, using a two-dimensional (latitude/height) model constrained by source gas mixing ratios at the surface. Model calculations of the decrease of total column ozone since 1980 agree reasonably well with observed ozone trends, in particular when the contribution from very short-lived bromine compounds is included. Model calculations with bromine source gas mixing ratios fixed at 1959 levels, corresponding approximately to a situation with no anthropogenic bromine emissions, show an ozone column reduction between 1980 and 2005 at Northern Hemisphere mid-latitudes of only ≈55% compared to a model run including all halogen source gases. In this sense anthropogenic bromine emissions are responsible for ≈45% of the model estimated column ozone loss at Northern Hemisphere mid-latitudes. However, since a large fraction of the bromine induced ozone loss is due to the combined BrO/ClO catalytic cycle, the effect of bromine would have been smaller in the absence of anthropogenic chlorine emissions. The chemical efficiency of bromine relative to chlorine for global total ozone depletion from our model calculations, expressed by the so called α-factor, is 64 on an annual average. This value is much higher than previously published results. Updates in reaction rate constants can explain only part of the differences in α. The inclusion of bromine from very short-lived source gases has only a minor effect on the global mean α-factor

    Carrier-wave steepened pulses and gradient-gated high-order harmonic generation using linear ramp waveforms

    Full text link
    We show how to optimize the process of high-harmonic generation (HHG) by gating the interaction using the field gradient of a driving pulse with a linear ramp waveform. Since maximized field gradients are efficiently generated by self-steepening processes, we first present a generalized theory of optical carrier-wave self-steepened (CSS) pulses. This goes beyond existing treatments, which only consider third-order nonlinearity, and has the advantage of describing pulses whose wave forms have a range of symmetry properties. Although a fertile field for theoretical work, CSS pulses are difficult to realize experimentally because of the deleterious effect of dispersion. We therefore consider synthesizing CSS-like profiles using a suitably phased sub-set of the harmonics present in a true CSS wave form. Using standard theoretical models of HHG, we show that the presence of gradient-maximized regions on the wave forms can raise the spectral cut-off and so yield shorter attosecond pulses. We study how the quality of the attosecond bursts created by spectral filtering depends on the number of harmonics included in the driving pulse.Comment: 8 pages, 10 figures; with appendix not present in published versio

    Influence of the wintertime North Atlantic Oscillation on European tropospheric composition: an observational and modelling study

    Get PDF
    We have used satellite observations and a simulation from the TOMCAT chemistry transport model (CTM) to investigate the influence of the well-known wintertime North Atlantic Oscillation (NAO) on European tropospheric composition. Under the positive phase of the NAO (NAO-high), strong westerlies tend to enhance transport of European pollution (e.g. nitrogen oxides, NOx; carbon monoxide, CO) away from anthropogenic source regions. In contrast, during the negative phase of the NAO (NAO-low), more stable meteorological conditions lead to a build-up of pollutants over these regions relative to the wintertime average pollution levels. However, the secondary pollutant ozone shows the opposite signal of larger values during NAO-high. NAO-high introduces Atlantic ozone-enriched air into Europe, while under NAO-low westerly transport of ozone is reduced, yielding lower values over Europe. Furthermore, ozone concentrations are also decreased by chemical loss through the reaction with accumulated primary pollutants such as nitric oxide (NO) in NAO-low. Peroxyacetyl nitrate (PAN) in the upper troposphere–lower stratosphere (UTLS) peaks over Iceland and southern Greenland in NAO-low, between 200 and 100 hPa, consistent with the trapping by an anticyclone at this altitude. Model simulations show that enhanced PAN over Iceland and southern Greenland in NAO-low is associated with vertical transport of polluted air from the mid-troposphere into the UTLS. Overall, this work shows that NAO circulation patterns are an important governing factor for European wintertime composition and air pollution

    On the Inadequacy of Species Distribution Models for Modelling the Spread of SARS-CoV-2: Response to Araújo and Naimi

    Get PDF
    The ongoing pandemic of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is causing significant damage to public health and economic livelihoods, and is putting significant strains on healthcare services globally. This unfolding emergency has prompted the preparation and dissemination of the article “Spread of SARS-CoV-2 Coronavirus likely to be constrained by climate” by Araújo and Naimi (2020). The authors present the results of an ensemble forecast made from a suite of species distribution models (SDMs), where they attempt to predict the suitability of the climate for the spread of SARS-CoV-2 over the coming months. They argue that climate is likely to be a primary regulator for the spread of the infection and that people in warm-temperate and cold climates are more vulnerable than those in tropical and arid climates. A central finding of their study is that the possibility of a synchronous global pandemic of SARS-CoV-2 is unlikely. Whilst we understand that the motivations behind producing such work are grounded in trying to be helpful, we demonstrate here that there are clear conceptual and methodological deficiencies with their study that render their results and conclusions invalid. What follows is a response to the Araújo and Naimi article centered around three main criticisms: 1) Given the fact that SARS-CoV-2 has a primary infection pathway of direct contact, it is in an active spreading phase, and remains largely underreported in the Global South, it represents an inappropriate system for analysis using the SDM framework. 2) Even if we were to accept that an SDM framework would be applicable here, the methodology presented in the article strays far from best-practice guidelines for the application of SDMs. 3) The dissemination strategy of the authors failed to respect the frameworks of risks adhered to in other academic disciplines pertaining to public health, resulting in erroneous but well-publicised claims with broad policy implications before any scientific oversight could be applied

    Role of OH variability in the stalling of the global atmospheric CH4 growth rate from 1999 to 2006

    Get PDF
    The growth in atmospheric methane (CH4) concentrations over the past two decades has shown large variability on a timescale of several years. Prior to 1999 the globally averaged CH4 concentration was increasing at a rate of 6.0 ppb/yr, but during a stagnation period from 1999 to 2006 this growth rate slowed to 0.6 ppb/yr. From 2007 to 2009 the growth rate again increased to 4.9 ppb/yr. These changes in growth rate are usually ascribed to variations in CH4 emissions. We have used a 3-D global chemical transport model, driven by meteorological reanalyses and variations in global mean hydroxyl (OH) concentrations derived from CH3CCl3 observations from two independent networks, to investigate these CH4 growth variations. The model shows that between 1999 and 2006, changes in the CH4 atmospheric loss contributed significantly to the suppression in global CH4 concentrations relative to the pre-1999 trend. The largest factor in this is relatively small variations in global mean OH on a timescale of a few years, with minor contributions of atmospheric transport of CH4 to its sink region and of atmospheric temperature. Although changes in emissions may be important during the stagnation period, these results imply a smaller variation is required to explain the observed CH4 trends. The contribution of OH variations to the renewed CH4 growth after 2007 cannot be determined with data currently available

    Diagnosing air quality changes in the UK during the COVID-19 lockdown using TROPOMI and GEOS-Chem

    Get PDF
    The dramatic and sudden reduction in anthropogenic activity due to lockdown measures in the UK in response to the COVID-19 outbreak has resulted in a concerted effort to estimate local and regional changes in air quality, though changes in underlying emissions remain uncertain. Here we combine satellite observations of tropospheric NO_{2} from TROPOspheric Monitoring Instrument and the Goddard Earth Observing System (GEOS)-Chem 3D chemical transport model to estimate that NO_{x} emissions declined nationwide by ~20% during the lockdown (23 March to 31 May 2020). Regionally, these range from 22% to 23% in the western portion of the country to 29% in the southeast and Manchester, and >40% in London. We apply a uniform 20% lockdown period emission reduction to GEOS-Chem anthropogenic emissions over the UK to determine that decline in lockdown emissions led to a national decline in PM_{2.5} of 1.1 μg m^{−3}, ranging from 0.6 μg m^{−3} in Scotland to 2 μg m^{−3} in the southwest. The decline in emissions in cities (>40%) is greater than the national average and causes an increase in ozone of ~2 ppbv in London and Manchester. The change in ozone and PM_{2.5} concentrations due to emission reductions alone is about half the total change from 2019 to 2020. This emphasizes the need to account for emissions and other factors, in particular meteorology, in future air pollution abatement strategies and regulatory action
    corecore