179 research outputs found

    Observing Pulsars with a Phased Array Feed at the Parkes Telescope

    Full text link
    During February 2016, CSIRO Astronomy and Space Science and the Max-Planck-Institute for Radio Astronomy installed, commissioned and carried out science observations with a phased array feed (PAF) receiver system on the 64m diameter Parkes radio telescope. Here we demonstrate that the PAF can be used for pulsar observations and we highlight some unique capabilities. We demonstrate that the pulse profiles obtained using the PAF can be calibrated and that multiple pulsars can be simultaneously observed. Significantly, we find that an intrinsic polarisation leakage of -31dB can be achieved with a PAF beam offset from the centre of the field of view. We discuss the possibilities for using a PAF for future pulsar observations and for searching for fast radio bursts with the Parkes and Effelsberg telescopes.Comment: 10 pages, 8 figures, 2 tables. It has been accepted for publication in PAS

    The Performance and Calibration of the CRAFT Fly's Eye Fast Radio Burst Survey

    Full text link
    Since January 2017, the Commensal Real-time ASKAP Fast Transients survey (CRAFT) has been utilising commissioning antennas of the Australian SKA Pathfinder (ASKAP) to survey for fast radio bursts (FRBs) in fly's eye mode. This is the first extensive astronomical survey using phased array feeds (PAFs), and a total of 20 FRBs have been reported. Here we present a calculation of the sensitivity and total exposure of this survey, using the pulsars B1641-45 (J1644-4559) and B0833-45 (J0835-4510, i.e.\ Vela) as calibrators. The design of the survey allows us to benchmark effects due to PAF beamshape, antenna-dependent system noise, radio-frequency interference, and fluctuations during commissioning on timescales from one hour to a year. Observation time, solid-angle, and search efficiency are calculated as a function of FRB fluence threshold. Using this metric, effective survey exposures and sensitivities are calculated as a function of the source counts distribution. The implied FRB rate is significantly lower than the 3737\,sky−1^{-1}\,day−1^{-1} calculated using nominal exposures and sensitivities for this same sample by \citet{craft_nature}. At the Euclidean power-law index of −1.5-1.5, the rate is 10.7−1.8+2.7 (sys) ± 3 (stat)10.7_{-1.8}^{+2.7}\,{\rm (sys)} \, \pm \, 3\,{\rm (stat)}\,sky−1^{-1}\,day−1^{-1} above a threshold of 57±6 (sys)57\pm6\,{\rm (sys)}\,Jy\,ms, while for the best-fit index for this sample of −2.1-2.1, it is 16.6−1.5+1.9 (sys) ±4.7 (stat)16.6_{-1.5}^{+1.9} \,{\rm (sys)}\, \pm 4.7\,{\rm (stat)}\,sky−1^{-1}\,day−1^{-1} above a threshold of 41.6±1.5 (sys)41.6\pm1.5\,{\rm (sys)}\,Jy\,ms. This strongly suggests that these calculations be performed for other FRB-hunting experiments, allowing meaningful comparisons to be made between them.Comment: 21 pages, 15 figures, 2 tables, accepted for publication in PAS

    Cold gas outflows from the Small Magellanic Cloud traced with ASKAP

    Full text link
    Feedback from massive stars plays a critical role in the evolution of the Universe by driving powerful outflows from galaxies that enrich the intergalactic medium and regulate star formation. An important source of outflows may be the most numerous galaxies in the Universe: dwarf galaxies. With small gravitational potential wells, these galaxies easily lose their star-forming material in the presence of intense stellar feedback. Here, we show that the nearby dwarf galaxy, the Small Magellanic Cloud (SMC), has atomic hydrogen outflows extending at least 2 kiloparsecs (kpc) from the star-forming bar of the galaxy. The outflows are cold, T<400 KT<400~{\rm K}, and may have formed during a period of active star formation 25−6025 - 60 million years (Myr) ago. The total mass of atomic gas in the outflow is ∼107\sim 10^7 solar masses, M⊙{\rm M_{\odot}}, or ∼3\sim 3% of the total atomic gas of the galaxy. The inferred mass flux in atomic gas alone, M˙HI∼0.2−1.0 M⊙ yr−1\dot{M}_{HI}\sim 0.2 - 1.0~{\rm M_{\odot}~yr^{-1}}, is up to an order of magnitude greater than the star formation rate. We suggest that most of the observed outflow will be stripped from the SMC through its interaction with its companion, the Large Magellanic Cloud (LMC), and the Milky Way, feeding the Magellanic Stream of hydrogen encircling the Milky Way.Comment: Published in Nature Astronomy, 29 October 2018, http://dx.doi.org/10.1038/s41550-018-0608-

    21-cm cosmology

    Full text link
    Imaging the Universe during the first hundreds of millions of years remains one of the exciting challenges facing modern cosmology. Observations of the redshifted 21 cm line of atomic hydrogen offer the potential of opening a new window into this epoch. This would transform our understanding of the formation of the first stars and galaxies and of the thermal history of the Universe. A new generation of radio telescopes is being constructed for this purpose with the first results starting to trickle in. In this review, we detail the physics that governs the 21 cm signal and describe what might be learnt from upcoming observations. We also generalize our discussion to intensity mapping of other atomic and molecular lines.Comment: 64 pages, 20 figures, submitted to Reports on Progress in Physics, comments welcom

    Illuminating the past 8 billion years of cold gas towards two gravitationally lensed quasars

    Get PDF
    Using the Boolardy Engineering Test Array of the Australian Square Kilometre Array Pathfinder (ASKAP BETA), we have carried out the first z = 0-1 survey for HI and OH absorption towards the gravitationally lensed quasars PKS B1830-211 and MGJ0414+0534. Although we detected all previously reported intervening systems towards PKS B1830-211, in the case of MG J0414+0534, three systems were not found, indicating that the original identifications may have been confused with radio frequency interference. Given the sensitivity of our data, we find that our detection yield is consistent with the expected frequency of intervening HI systems estimated from previous surveys for 21-cm emission in nearby galaxies and z ~ 3 damped Lyman a absorbers. We find spectral variability in the z = 0.886 face-on spiral galaxy towards PKS B1830-211 from observations undertaken with the Westerbork Synthesis Radio Telescope in 1997/1998 and ASKAP BETA in 2014/2015. The HI equivalent width varies by a few per cent over approximately yearly time-scales. This long-term spectral variability is correlated between the north-east and south-west images of the core, and with the total flux density of the source, implying that it is observationally coupled to intrinsic changes in the quasar. The absence of any detectable variability in the ratio of HI associated with the two core images is in stark contrast to the behaviour previously seen in the molecular lines. We therefore infer that coherent opaque HI structures in this galaxy are larger than the parsec-scale molecular clouds found at mm-wavelengths

    Wide-field broad-band radio imaging with phased array feeds: A pilot multi-epoch continuum survey with ASKAP-BETA

    Get PDF
    The Boolardy Engineering TestArray is a 6×12mdish interferometer and the prototype of the Australian Square Kilometre Array Pathfinder (ASKAP), equipped with the first generation of ASKAP's phased array feed (PAF) receivers. These facilitate rapid wide-area imaging via the deployment of simultaneous multiple beams within an ~30 deg2 field of view. By cycling the array through 12 interleaved pointing positions and using nine digitally formed beams, we effectively mimic a traditional 1 h × 108 pointing survey, covering ~150 deg2 over 711-1015 MHz in 12 h of observing time. Three such observations were executed over the course of a week. We verify the full bandwidth continuum imaging performance and stability of the system via self-consistency checks and comparisons to existing radio data. The combined three epoch image has arcminute resolution and a 1s thermal noise level of 375 µJy beam-1, although the effective noise is a factor of ~3 higher due to residual sidelobe confusion. From this we derive a catalogue of 3722 discrete radio components, using the 35 per cent fractional bandwidth to measure in-band spectral indices for 1037 of them. A search for transient events reveals one significantly variable source within the survey area. The survey covers approximately two-thirds of the Spitzer South Pole Telescope Deep Field. This pilot project demonstrates the viability and potential of using PAFs to rapidly and accurately survey the sky at radio wavelengths

    An ASKAP survey for HI absorption towards dust-obscured quasars

    Full text link
    Obscuration of quasars by accreted gas and dust, or dusty intervening galaxies, can cause active galactic nuclei (AGN) to be missed in optically-selected surveys. Radio observations can overcome this dust bias. In particular, radio surveys searching for HI absorption inform us on how the AGN can impact on the cold neutral gas medium within the host galaxy, or the population of intervening galaxies through the observed line of sight gas kinematics. We present the results of a HI absorption line survey at 0.4<z<10.4 < z < 1 towards 34 obscured quasars with the Australian SKA Pathfinder (ASKAP) commissioning array. We detect three HI absorption lines, with one of these systems previously unknown. Through optical follow-up for two sources, we find that in all detections the HI gas is associated with the AGN, and hence that these AGN are obscured by material within their host galaxies. Most of our sample are compact, and in addition, are either gigahertz peaked spectrum (GPS), or steep spectrum (CSS) sources, both thought to represent young or recently re-triggered radio AGN. The radio spectral energy distribution classifications for our sample agree with galaxy evolution models in which the obscured AGN has only recently become active. Our associated HI detection rate for GPS and compact SS sources matches those of other surveys towards such sources. We also find shallow and asymmetric HI absorption features, which agrees with previous findings that the cold neutral medium in compact radio galaxies is typically kinematically disturbed by the AGN.Comment: Accepted for publication in MNRAS. 19 pages, 8 figure

    The Australian Square Kilometre Array Pathfinder: Performance of the Boolardy Engineering Test Array

    Get PDF
    We describe the performance of the Boolardy Engineering Test Array, the prototype for the Australian Square Kilometre Array Pathfinder telescope. Boolardy Engineering Test Array is the first aperture synthesis radio telescope to use phased array feed technology, giving it the ability to electronically form up to nine dual-polarisation beams. We report the methods developed for forming and measuring the beams, and the adaptations that have been made to the traditional calibration and imaging procedures in order to allow BETA to function as a multi-beam aperture synthesis telescope. We describe the commissioning of the instrument and present details of Boolardy Engineering Test Array’s performance: sensitivity, beam characteristics, polarimetric properties, and image quality. We summarise the astronomical science that it has produced and draw lessons from operating Boolardy Engineering Test Array that will be relevant to the commissioning and operation of the final Australian Square Kilometre Array Path telescope
    • …
    corecore