42 research outputs found

    Equilibrium and confinement of bunched annular beams

    Get PDF

    Beam Confinement in Periodic Permanent Magnet Focusing Klystrons

    Get PDF

    Confinement criterion for a highly bunched beam

    Get PDF

    Intense non-neutral beam propagation in a periodic solenoidal field using a macroscopic fluid model with zero thermal emittance

    Get PDF
    A macroscopic fluid model is developed to describe the nonlinear dynamics and collective processes in an intense high-current beam propagating in the z-direction through a periodic focusing solenoidal field B{sub z}(z + S) = B{sub z}(z), where S is the axial periodicity length. The analysis assumes that space-charge effects dominate the effects of thermal beam emittance, Kr{sub b}{sup 2} {much_gt} {epsilon}{sub th}{sup 2}, and is based on the macroscopic moment-Maxwell equations, truncated by neglecting the pressure tensor and higher-order moments. Assuming a thin beam with r{sub b} {much_lt} S, azimuthally symmetric beam equilibria with {partial_derivative}/{partial_derivative}t = 0 = {partial_derivative}/{partial_derivative}{theta} are investigated. To illustrate the considerable flexibility of the macroscopic formalism, assuming (nearly) uniform axial flow velocity V{sub b} over the beam cross section, beam equilibrium properties are calculated for two examples: (a) uniform radial density profile over the interval 0 {le} r < r{sub b}(z), and (b) an infinitesimally thin annular beam centered at r = r{sub b}(z). The analysis generally allows for the azimuthal flow velocity V{sub {theta}b}(r,z) to differ from the Larmor frequency, and the model is used to calculate the (leading-order) correction {delta}V{sub zb}(r,z) to the axial flow velocity for the step-function density profile in case (a) above

    Daily Rhythmic Behaviors and Thermoregulatory Patterns Are Disrupted in Adult Female MeCP2-Deficient Mice

    Get PDF
    Mutations in the X-linked gene encoding Methyl-CpG-binding protein 2 (MECP2) have been associated with neurodevelopmental and neuropsychiatric disorders including Rett Syndrome, X-linked mental retardation syndrome, severe neonatal encephalopathy, and Angelman syndrome. Although alterations in the performance of MeCP2-deficient mice in specific behavioral tasks have been documented, it remains unclear whether or not MeCP2 dysfunction affects patterns of periodic behavioral and electroencephalographic (EEG) activity. The aim of the current study was therefore to determine whether a deficiency in MeCP2 is sufficient to alter the normal daily rhythmic patterns of core body temperature, gross motor activity and cortical delta power. To address this, we monitored individual wild-type and MeCP2-deficient mice in their home cage environment via telemetric recording over 24 hour cycles. Our results show that the normal daily rhythmic behavioral patterning of cortical delta wave activity, core body temperature and mobility are disrupted in one-year old female MeCP2-deficient mice. Moreover, female MeCP2-deficient mice display diminished overall motor activity, lower average core body temperature, and significantly greater body temperature fluctuation than wild-type mice in their home-cage environment. Finally, we show that the epileptiform discharge activity in female MeCP2-deficient mice is more predominant during times of behavioral activity compared to inactivity. Collectively, these results indicate that MeCP2 deficiency is sufficient to disrupt the normal patterning of daily biological rhythmic activities

    Plasma Dynamics

    Get PDF
    Contains table of contents for Section 2 and reports on four research projects.National Science Foundation Grant ECS-89-02990U.S. Air Force - Office of Scientific Research Grant AFOSR 89-0082-CU.S. Army - Harry Diamond Laboratories Contract DAAL02-89-K-0084U.S. Army - Harry Diamond Laboratories Contract DAAL02-92-K-0037U.S. Department of Energy Contract DE-AC02-90ER-40591U.S. Navy - Office of Naval Research Grant N00014-90-J-4130Lawrence Livermore National Laboratories Subcontract B-160456National Aeronautics and Space Administration Grant NAGW-2048National Science Foundation Grant ECS-88-22475U.S. Department of Energy Grant DE-FG02-91-ER-5410

    Plasma Dynamics

    Get PDF
    Contains table of contents for Section 2 and reports on four research projects.National Science Foundation Grant ECS 89-02990U.S. Air Force - Office of Scientific Research Grant AFOSR 89-0082-BU.S. Army - Harry Diamond Laboratories Contract DAAL02-89-K-0084U.S. Department of Energy Contract DE-AC02-90ER40591U.S. Navy - Office of Naval Research Grant N00014-90-J-4130Lawrence Livermore National Laboratory Subcontract B-160456National Science Foundation Grant ECS 88-22475U.S. Department of Energy Contract DE-FG02-91-ER-54109National Aeronautics and Space Administration Grant NAGW-2048U.S.-Israel Binational Science Foundation Grant 87-0057U.S Department of Energy Contract DE-AC02-78-ET-5101

    Theoretical and Computational Investigation of Periodically Focused Intense Charged-Particle Beams

    No full text
    The purpose of this report is to summarize results of theoretical and computational investigations of periodically focused intense charged-particle beams in parameter regimes relevant to the development of advanced high-brightness, high-power accelerators for high-energy physics research. The breakthroughs and highlights in our research in the period from April 1, 2010 to March 30, 2013 were: a) Theory and simulation of adiabatic thermal Child-Langmuir flow; b) Particle-in-cell simulations of adiabatic thermal beams in periodic solenoidal focusing field; c)Dynamics of charged particles in an adiabatic thermal beam equilibrium in a periodic solenoidal focusing field; d) Training of undergraduate researchers and graduate student in accelerator and beam physics. A brief introduction and summary is presented. Detailed descriptions of research results are provided in an appendix of publications at the end of the report
    corecore