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Executive Summary 

 

Under the auspices of the research grant (Chen, 2001), the research group has made significant 

contributions in a number of important areas in the HIF and HEDP research, including:  

(a)  Derivation of rms envelope equations and study of rms envelope dynamics for high-

intensity heavy ion beams in a small-aperture AG focusing transport systems (Qian, 

Zhou and Chen, 2003a and 2003b);  

(b)  Identification of a new mechanism for chaotic particle motion, halo formation, and 

beam loss in high- intensity heavy ion beams in a small-aperture AG focusing systems 

(Zhou, Qian and Chen, 2003; Zhou, Qian and Chen, et al., 2003; Zhou and Chen, 

2005; Zhou, 2006);  

(c)  Development of elliptic beam theory (Bhatt, Chen and Zhou, 2004; Bhatt and Chen, 

2005; Bhatt, 2006; Bhatt, Bemis, and Chen, 2005 and 2006; Zhou, 2006; Zhou, Bhatt, 

and Chen 2006); 

(d)  Study of Physics Issues in the Neutralization Transport Experiment (NTX) (Zhou, 

Qian and Chen, et al., 2003; Henestroza, Eylon, Roy, et al., 2005; Henestroza, 2006).  

All of these contributions have been made possible through rigorous collaboration with the 

Inertial Fusion Energy Science (IFES) community, especially the Virtual National Laboratory for 

HIF.  

 

1. Derivation of rms envelope equations and study of rms envelope dynamics fo high-

intensity heavy ion beams in a small-aperture alternating-gradient (AG) focusing 

transport systems (Qian, Zhou and Chen, 2003a and 2003b) 

 

Under the auspices of the present research grant (Chen, 2001), we studied an unbunched 

elliptical beam propagating in an alternating-gradient focusing field and a cylindrical metal pipe 

with radius R , as shown in Fig. 1.1 (Qian, Zhou and Chen, 2003a and 2003b). The beam has an 

envelope ( )sa  in the x -direction and an envelope ( )sb  in the y -direction. The root-mean-

squared envelope equations including all higher-order image-charge effects from the cylindrical 

conducting pipe were derived and analyzed. Higher-order image-charge effects were expressed 

in terms of so-called multiple moment factors in the rms beam envelope equations, which were 
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then evaluated. In particular, the self-electric and self-magnetic fields were calculated for an 

unbunched beam with elliptic symmetry and an arbitrary transverse dependence in the self-

similar beam density model.  

Numerical results showed that for vacuum phase advance °≤ 90vσ , the image-charge 

effects on the matched and slightly mismatched beam envelopes are negligibly small, at all 

orders, for all beams with arbitrary beam density profiles (including hollow density profiles 

measured recently in the heavy ion injector experiment at Lawrence Berkeley National 

Laboratory) as well as for arbitrary small apertures (including beams with large aspect ratios).  

As shown in Fig. 1.2, the matched beam enve lope functions ( )sa  and ( )sb  for a hollow 

beam are plotted for a periodic step-function lattice with filling factor 5.0=η , normalized beam 

perveance 0.10=εKS , emittances εεε == yx , and vacuum phase advance °= 0.80vσ , which 

corresponds to those in the High-Current Experiment (HCX) at LBNL (Seidl, Bieniosek, Celata, 

et al., 2001) for two cases: free space and with a cylindrical conducting pipe of %.Ramax 381= .  

Furthermore, the main unstable region for the envelope evolution with image-charge effects, 

which occurs for °<<° 27090 vσ , depending on the value of the normalized beam intensity 

εSK , is found to be narrower than its counterpart without image-charge effects. Figure 1.3 is a 

plot of εSK  versus vσ , showing the unstable regions of the slightly mismatched beam 

envelopes for uniform beam with 5.0=η  in three cases: (a) free space, (b) 75.0max =Ra , and 

(c) 90.0max =Ra . Although the lower boundaries for the three cases nearly coincide, there is an 

observable difference between their upper boundaries.  

In this study, the beam centroid was assumed to be on axis. Once it is off-axis, however, it 

will couple to the rms envelope oscillations, which requires further investigation.  

 

2. Identification of a new mechanism for chaotic particle motion, halo formation,and 

beam loss in high-intensity heavy ion beams in a small-aperture alternating-gradient 

(AG) focusing systems (Zhou, Qian and Chen, 2003; Zhou, Qian, Chen, et al., 2003; 

Zhou and Chen, 2005; Zhou 2006)  

 

Under the auspices of the research grant (Chen, 2001), we used a test-particle model to 
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Figure 1.1 Elliptical unbunched charged-particle beam in a cylindrical conducting pipe. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.2 The normalized envelope functions  Sa ε  and Sb ε  for 080=υσ , 

10ˆ =K , 5.0=η , 0.4ˆ =R  for a hollow beam (from Qian, Zhou and Chen, 2003a).

0.0 0.5 1.0 1.5 2.0

s/S

1.00

1.75

2.50

3.25

4.00

b

a

Free Space
Round pipe

N
or

m
al

iz
ed

 E
nv

el
op

e 

Beam

Round Metal Pipe

x

y

a

b

R

Beam

Round Metal Pipe

x

y

a

b

R



 5 

 

 

 

 

 

 

 

 

 

 

Figure 1.3 Plot of the unstable regions in the dimensionless parameter space for the beam 

envelope evolution with 5.0=η  for three cases corresponding to (a) free space, (b) 

75.0max == RaA , and (c) 90.0max == RaA . The shaded region is the unstable region 

for the beam envelope evolution with image-charge effects and  90.0max == RaA  

(from Qian, Zhou and Chen, 2003a).  

 

investigate the halo formation and chaos induced by the image-charge effects in such small 

aperture alternating-gradient focusing transport systems (Zhou, Qian and Chen, 2003), which is a 

new mechanism for chaotic particle motion and halo formation in intense charged-particle 

beams.  

In particular, an analytical expression for the scalar potential of this elliptic beam in a round 

pipe was obtained for the Kapchinskij-Vladimirskij (KV) distribution for an rms-matched 

continuous intense charged-particle beam propagating in the longitudinal direction though an 

alternating-gradient quadrupole magnetic field with axial periodicity length S  in a perfectly 

conducting round pipe R . The fields induced by the image charges were shown to be nonlinear. 

Therefore, the particle orbits are non-integrable, and can become chaotic. 

Numerical simulation results showed that the particles can escape from the beam core to 

form halos in several periods and strike the wall after tens of periods due to the image charge 

effects when the beam maximum envelope a  fills the pipe radius up to 86%. In the simulation 

we used a periodic step-function lattice with filling factor 5.0=η , normalized beam perveance  
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Figure 2.1 Plots of the percentage of particles striking the conductor wall as a function of 

propagation distance for 5.0=η , ,0.10=xKS ε εεε == yx , °= 80vσ  and several 

choices of R . Here, 10,000 test particles with the KV distribution initially are used in 

the simulations (from Zhou, Qian and Chen, et al., 2003). 

 

0.10=εKS , emittances εεε == yx , and vacuum phase advance °= 0.80vσ , which 

corresponds to those in the High-Current Experiment (HCX) at LBNL (Seidl, Bieniosek, Celata, 

et al., 2001). Furthermore, the beam loss was computed as a function of propagation distance for 

four choices of the pipe radius with =Ra  86%, 83%, 81%, and 72%, as shown in Fig. 2.1.  

Our results, obtained for the ideal KV distribution, represent the beam loss one may observe 

for a uniform density beam in a long (>100 periods) focusing system such as the planned 

Integrated Research Experiment (IRE) for heavy ion fusion. They also suggest that in short (2 to 

30 periods) systems such as the existing Neutralized Transport Experiment (NTX) (Yu, 

Henestroza, Eylon, Roy, et al., 2005; Henestroza, 2006) and High-Current Experiment (HCX) 

(Seidl, Bieniosek, Celata, et al., 2001), imperfections such as charge-density fluctuations, 

mismatch, and focusing field nonlinearity and error may play a more important role than image 

charge effects on beam halo production (Zhou, Qian, Chen, et al., 2003). 

We also performed parametric studies of image-charge effects on inducing chaotic particle 

motion, beam halo formation and beam loss, which will help us to identify the operating regime 
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in which beam loss is minimum. Detailed results of this investigation were published (Zhou and 

Chen, 2005).  

 

3. Development of elliptic beam theory ( Bhatt, Chen and Zhou, 2004; Bhatt and Chen, 

2005; Bhatt, 2006; Bhatt, Bemis and Chen, 2005 and 2006;  Zhou, 2006; Zhou, Bhatt 

and Chen, 2006) 

 

Under the auspices of the research grant (Chen, 2001), a theory of non-relativistic, laminar, 

elliptic beam formation was developed (Bhatt, Chen and Zhou, 2004; Bhatt and Chen 2005; 

Bhatt, 2006; Bhatt, Bemis and Chen, 2005 and 2006). The beam was shown to have the Child-

Langmuir form (Child, 1911; Langmuir, 1923). An analytic expression for the electrostatic 

potential outside the beam was derived. Equipotentials corresponding to electrode surfaces were 

computed numerically.  The effectiveness of the electric field formed by the electrodes in 

focusing and preserving the elliptic Child-Langmuir beam was verified via 3D ray-tracing 

simulations. 

As an example, we computed the potential outside a 10:1:8.7 space-charge-limited elliptical 

diode of semi-major axis ba 10= , semi-minor axis b , and length bd 7.8= .  Equipotentials 

corresponding to 0=Φ  and dΦ=Φ  are shown in Figs. 3.1(a) and 2.3.2(b), respectively, for 

several values of z .  The level contours are roughly elliptical in shape, and the dΦ=Φ  surface 

is more steeply inclined to the beam than the 0=Φ  surface, as expected from the 2D theory 

(Pierce, 1954). The aspect ratio of a/b=10 is chosen here to illustrate the theory, although a 

typical heavy ion beam in the AG focusing system only has an aspect ratio of 1.5 approximately.  

We verified our theory by a 3D space-charge emission simulation using OMNITRAK 

(OmniTrak Software, Field Precisions, Albuquerque, New Mexico), a commercially available 

ray-tracing code.  Simulation results are shown in Fig. 3.2 for the same geometry as in Fig. 3.1.  

Neumann boundaries were used for the symmetry planes of the beam as well as for the outer 

boundaries of the simulation region, which is shown in Fig. 3.2 along with computed 

equipotentials and particle trajectories projected to the 0=x  and 0=y  planes. 

The beam produced by the simulation is essentially parallel, laminar, uniform density Child-

Langmuir flow. Beam laminarity is often characterized by the rms beam emittances  
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Figure 3.1: Level curves of (a) 0=Φ  and (b) dΦ=Φ   surfaces for a 10: 1:8.7 space-

charge-limited elliptical diode of semi-major radius b10 , semi-minor radius b , and 

length b7.8 .  The beam fills the shaded area, which is intersected by the 0=Φ  surface at 

0=z  and the dΦ=Φ  surface at bz 7.8=  (from Bhatt and Chen, 2005). 
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Figure 3.2: (Color online) A 3D OMNITRAK simulation of space-charge- limited Child-

Langmuir flow using the 10:1:8.7 elliptical diode geometry shown in Fig. 2.3.1.  Particle 

trajectories and equipotentials are shown in (a) the 0=x  plane and (b) the 0=y  plane  

(from Bhatt and Chen, 2005).   
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( ) 21222 xxxxx ′−′≡ε  and ( ) 21222 yyyyy ′−′≡ε , where the averages of transverse 

particle position ( )yx,  and divergence ( ) ( )dzdydzdxyx ,, ≡′′  are taken over a slice of the beam 

at dz = .  For a uniform density elliptic beam, these emittances can be related to effective beam 

temperatures (Lawson, 1988) by the relations ( ) 21
, 8 dxeffx qkTa Φ=ε  and ( ) 21

, 8 dyeffy qkTb Φ=ε .  

If we use the parameters of our earlier examples, a 10:1:8.7 elliptical electron or ion diode with 

0.5=Φ d kV, 2.5=d mm, 0.6=a mm, and 6.0=b mm, the OMNITRAK simulation shown in Fig. 

3.2 predicts the effective beam temperatures 4
, 107.6 −×=xeffT eV and 3

, 101.8 −×=yeffT eV.   

These temperatures are negligible compared to a typical thermionic electron or ion diode 

temperature of ~0.1 eV, implying that the emittance of an elliptical diode constructed using the 

above prescription will approach the theoretical limits imposed by finite emitter temperature.   

We also developed a cold-fluid equilibrium theory of a periodically twisted elliptic beam. 

Detailed results were published (Zhou, 2006; Zhou, Bhatt and Chen, 2006). The combination of 

the elliptic beam gun theory and the elliptic beam propagation theory will enable researchers to 

design very high-brightness electron and ions for particle accelerator applications, high-energy 

density physics research, and/or heavy ion fusion.  

 

4. Study of physics issues in the Neutralization Transport Experiment (Zhou, Qian, Chen, 

et al., 2003; Henestroza, Eylon, Roy, et al., 2005; Henestroza, 2006)   

 

Under the auspices of the research grant (Chen, 2001), we used the test-particle  model to analyze 

the Neutralized Transport Experiment (NTX) at LBNL (Henentroza, Eylon, Roy, et al., 2005). 

Results showed that there is no halo formation in the simulation for this short channel. However, 

the nonlinear forces induced by image charges create slight S-shaped and non-elliptic 

distributions in ( )x,x ′  and ( )y,y ′ , respectively. The orientation of S-shaped and non-elliptic 

distribution in ( )x,x ′  from the test-particle calculation differs from that measured experimentally 

(Zhou, Qian, Chen, et al., 2003). The cause for the discrepancy remains to be resolved.  

One of the graduate students supported in part by this research grant led the theoretical, 

computational, and experimental studies of a final focus system of heavy ion beams (Henestroza, 

Eylon, Roy, et al, 2005) , and completed his doctoral thesis in 2006 (Henestroza 2006).  
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Image-charge effects on the envelope dynamics of an unbunched
intense charged-particle beam

B. L. Qian,* J. Zhou, and C. Chen
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014201-1
The root-mean-squared (rms) envelope equations are derived and analyzed for an unbunched intense
charged-particle beam in an alternating-gradient focusing field and a cylindrical conducting pipe. All
higher-order image-charge effects from the cylindrical pipe are expressed in terms of so-called
multiple moment factors in the rms beam envelope equations, and the multiple moment factors are
evaluated. Numerical results show that for vacuum phase advance �v < 90�, the image-charge effects
on the matched and slightly mismatched beam envelopes are negligibly small, at all orders, for all
beams with arbitrary beam density profiles (including hollow density profiles) as well as for arbitrary
small apertures (including beams with large aspect ratios). However, the main unstable region for the
envelope evolution with image-charge effects, which occurs for 90� <�v < 270�, depending on the
value of the normalized beam intensity SK=", is found to be narrower than its counterpart without
image-charge effects.

DOI: 10.1103/PhysRevSTAB.6.014201 PACS numbers: 41.85.Ja, 41.75.–i
Recently, Allen and Reiser [20,21] extended Sacherer’s
2D results to include the image-charge effects due to the

the self-electric and self-magnetic fields are calculated
for an unbunched beam with elliptic symmetry and an
I. INTRODUCTION

High-intensity accelerators with alternating-gradient
focusing systems have many applications in basic scien-
tific research and nuclear physics. These applications
include heavy ion fusion [1,2], nuclear waste treatment
[3], and spallation neutron source [4]. In the research and
development of high-intensity accelerators, a key issue is
to minimize the aperture of the transport system for
intense charged-particle beams, while preventing the
beams from developing large-amplitude charge density
and velocity fluctuations as well as subsequent emittance
growth and halo formation [4–15]. In order to understand
the collective behavior of charged-particle beams, it is
important to examine the beam envelope evolution under
the influence of both the beam space charge and the
image charges induced on the conducting walls of accel-
erator structures.

Intense charged-particle beams in alternating-gradient
focusing systems have been investigated since the late
1950s. One of the earliest works on the beam envelope
equations can be found in Ref. [16], in which the well-
known two-dimensional (2D) Kapchinskij-Vladimirskij
(KV) equations were derived for a uniform beam density
in free space. In 1965, Lapostolle [17] gave the three-
dimensional (3D) envelope equations for a uniform beam
density in free space, and his results could be applicable
for bunched beams. In 1971, Sacherer [18] and Lapostolle
[19] extended the previous 2D and 3D results to the
arbitrary beam density cases in free space. Sacherer’s
2D results, which describe the root-mean-squared (rms)
beam envelopes for all elliptical beams with arbitrary
beam densities, assume the same form of the KV
equations.
1098-4402=03=6(1)=014201(7)$20.00 
cylindrical conducting pipe. They analyzed the first-order
image-charge effects. Their results showed that the first-
order image-charge effects do not affect the beam enve-
lope evolution until the beam is very close to the wall
of the cylindrical conducting pipe. The expressions for
the first-order image-charge contributions in the rms
beam envelope equations in [20,21] were identical to
those obtained in an earlier paper by Lee, Close, and
Smith [22].

In general, there are two approaches in treating the
density distribution of a nonequilibrium beam. One ap-
proach uses a rigorous normal-mode analysis (i.e., small-
signal theory) [23,24] to describe the density evolution in
a charged-particle beam. The normal-mode analysis is
useful for understanding the collective oscillations and
instabilities in the beam. The other approach makes use of
the assumption of a self-similar beam density distribution
[7–9,11,17–21]. While the self-similar beam density
distribution is not rigorous and, in general, not self-
consistent, it has proven to be a useful model in the
many previous derivations of rms beam envelope equa-
tions [7–9,11,17–21]. The rms beam envelope equations
based on the self-similar model are very useful in the
design of beam optics. Although the beam density usually
does not remain in the prescribed self-similar form, the
rms envelope equations still give a quite accurate descrip-
tion of an intense beam, provided the actual beam emit-
tances, which can be either measured in the beam
experiment or computed in the self-consistent simulation,
are used (see, for example, Ref. [25]).

In this paper, we extend Allen and Reiser’s 2D envelope
equations to include all higher-order image-charge ef-
fects from the cylindrical conducting pipe. In particular,
2003 The American Physical Society 014201-1
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arbitrary transverse dependence in the self-similar beam
density model [7–9,11,17–21]. The rms envelope equa-
tions are derived, including all higher-order image-
charge effects, from the cylindrical conducting pipe.
Numerical results show that for vacuum phase advance
�v < 90�, the image-charge effects on the matched and
slightly mismatched beam envelopes are negligibly
small, at all orders, for all beams with arbitrary beam
density profiles (including hollow density profiles mea-
sured recently in the heavy ion injector experiment at
Lawrence Berkeley National Laboratory [26]) as well as
for arbitrary small apertures (including beams with large
aspect ratios). However, the main unstable region for the
envelope with image-charge effects, which occurs for
90� <�v < 270�, depending on the value of the normal-
ized beam intensity SK=", is found to be narrower than
its counterpart without image-charge effects [11].

The organization of the present paper is as follows. In
Sec. II, 2D envelope equations are derived, including all
higher-order image-charge effects. In Sec. III, the mul-
tiple moment factors in the envelope equations are eval-
uated. In Sec. IV, the higher-order image-charge effects
on the matched beam envelopes are investigated by
numerically solving the 2D envelope equations for arbi-
trary beam densities, including a hollow beam density
profile, in a cylindrical conducting pipe. In Sec. V, the
image-charge effects on the slightly mismatched beams
and beam envelope instability are numerically analyzed.
Conclusions are presented in Sec. VI.
II. BEAM ENVELOPE EQUATIONS WITH
IMAGE-CHARGE EFFECTS

We consider an unbunched elliptical beam propagating
in an alternating-gradient focusing field and a cylindrical
metal pipe with radius R, as shown in Fig. 1. The beam
has an envelope a�s� in the x direction and an envelope
x

y

a

b
R

Beam

Conducting Pipe

FIG. 1. Elliptical unbunched charged-particle beam in a
cylindrical conducting pipe.

014201-2
b�s� in the y direction, where s � z. The beam drift
velocity in the z direction is vz � �bc, where c is the
speed of light in vacuum. In the present analysis, we
assume that the beam centroid motion is stable and on
the z axis, and ignore the beam centroid motion.
Following the analysis of Sacherer [18], we express the
beam density in a self-similar beam model as

n�x; y; s� � n
�
x2

a2
�
y2

b2

�
: (1)

The general rms envelope equations can be expressed as
[18]

d2~xx

ds2
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In Eqs. (2) and (3), hi denotes the moment operator with
respect to the particle beam distribution; ~xx �

��������
hx2i

p
and

~yy �
��������
hy2i

p
are the rms envelopes in the x and y directions,

respectively;

"x � 4
hx2ih�dx=ds�2i � hx�dx=ds�i2�1=2; (4)

and

"y � 4
hy2ih�dy=ds�2i � hy�dy=ds�i2�1=2 (5)

are 4 times the beam rms emittances in the x and y
directions, respectively; s � c�bt is the axial distance;
� is the potential distribution generated by the beam
space charge including image-charge effects of the cy-
lindrical conducting pipe; �q�s� � qB0

q�s�=��bm�bc� is
the focusing parameter of the alternating-gradient focus-
ing system; ~BBq � B0

q�s��yx̂x � xŷy� is the alternating-
gradient quadrupole magnetic field with B0

q�s� � B0
q�s�

S�, where S is the period of the field, m and q are the rest
mass and charge of the particle, respectively; K �
2q2Nb=�

3m�2
bc

2 is the generalized beam perveance;
Nb �

R
1
�1

R
1
�1 n�x; y; s�dxdy is the number of charged

particle per unit length along the z direction; � � �1�
�2
b�

�1=2 is the relativistic factor of the beam.
In order to derive an explicit expression for the poten-

tial �, we solve Poisson’s equation

1

r
@
@r

�
r
@�
@r

�
�

1

r2
@2�

@ 2
� �4!qn

�
x2

a2
�
y2

b2

�
(6)

under the paraxial approximation with the boundary con-
dition �jr�R � 0. Here �r;  ; z� is the corresponding
cylindrical coordinate system. Using Green’s function
technique, it is readily shown that the solution to Eq. (6)
can be expressed as

� � �free ��image; (7)
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where

�free � �!abq
Z 1

0

du�����������������������������������
�a2 � u��b2 � u�

p Z T

0
n�T0�dT0 (8)

is the free-space contribution of the beam,

�image � 2q
Z 1

0

Z 2!

0
ln

�
R
r0

�
n
�
r02 cos2 0

a2
�
r02 sin2 0

b2

�
r0dr0d 0

� 2q
X1
m�1

Z 1

0

Z 2!

0

1

m

�
r0r

R2

�
m
cos
m� �  0��n

�
r02 cos2 0

a2
�
r02 sin2 0

b2

�
r0dr0d 0 (9)
is the image-charge contribution from the cylindrical
metal pipe, and the function T is defined by

T �
x2

a2 � u
�

y2

b2 � u
: (10)

The space-charge terms in the envelope equations can
be simplified by using Eqs. (7)–(10). The results are�

x
@�
@x

�
� Nbq�I

free
x � Iimage

x �; (11)

and �
y
@�
@y

�
� Nbq�Ifreey � Iimage

y �; (12)

where

Ifreex � �
~xx

~xx � ~yy
(13)

and

Ifreey � �
~yy

~xx � ~yy
(14)
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are the space-charge contributions in free space [18], and

Iimage
x � �

X1
l�1

~xx2�~xx2 � ~yy2�2l�1

R4l 42lNl (15)

and

Iimage
y � �

X1
l�1

~yy2�~yy2 � ~xx2�2l�1

R4l 42lNl (16)

are the image-charge contributions from the cylindrical
conducting pipe. Here,

Nl�2

�
�2l�!

4l�l!�2

�
2

R
1
0 2!abn�r̂r2�r̂r2l�1dr̂r�2


R
1
0 2n�r̂r2�r̂rdr̂r�2l

N2
b
4

R
1
0 n�r̂r

2�r̂r3dr̂r�2l

(17)

is a multiple moment factor related to the beam density
profile.

Substituting Eqs. (11)–(17) into Eqs. (2) and (3), we
obtain the envelope equations of the following form:
d2X

ds2
� �q�s�X� 2K



1

X� Y
�

X1
l�1

X�X2 � Y2�2l�1

R4l Nl

�
�

"2x
X3 (18)

and

d2Y

ds2
� �q�s�Y � 2K



1

X� Y
�

X1
l�1

Y�Y2 � X2�2l�1

R4l Nl

�
�

"2y
Y3 ; (19)
where X � 2~xx and Y � 2~yy.
Unlike the previous results obtained by Allen and

Reiser [20,21], which include only the l � 1 contribution,
the present envelope Eqs. (18) and (19) are complete,
including both the l � 1 contribution and all of the
higher-order image-charge effects with l � 2.

III. EVALUATION OF MULTIPLE MOMENT
FACTORS

The multiple moment factor Nl contains the informa-
tion about the higher-order image-charge effects in the
envelope equations (18) and (19). We can assess these
effects by evaluating Nl as a function of l. In particular,
we consider the following parabolic density profile [11]:

n �

8><
>:
n0 � (n0



1� 3

�
x2

a2 �
y2

b2

�
2
�
; x2

a2 �
y2

b2 � 1;

0; x2

a2
� y2

b2
> 1;

(20)

where

Nb �
Z 1

�1

Z 1

�1
ndxdy � !abn0 � const; (21)
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and (n0 is independent of x and y and satisfies �n0 �
(n0 � n0=2.

In Eq. (20), (n0 � 0 means that the beam density is a
constant across the beam profile, (n0 > 0 indicates that
the beam density decreases monotonically from the cen-
ter of profile to its edge and represents a Gaussian-like
beam profile, and (n0 < 0 implies that the beam density
increases monotonically from the center of beam profile
to its edge and represents a hollow beam profile such as
that observed in the heavy ion injector experiment at
LBNL [26].

Using Eq. (20) and the moment definition, we can
obtain the simplified expressions of envelopes X and Y.
They are written in the form of

X2 � a2
�
1�

1

2
g
�

(22)

and

Y2 � b2
�
1�

1

2
g
�
: (23)

In addition, substituting Eqs. (20) and (21) into Eq. (17),
we obtain

Nl � 2

�
�2l�!

4l�l!�2

�
2
�

1

l� 0:5g

�
2l
�
1� 2gl=�l� 3�

l� 1

�
2
; (24)

where

g �
(n0
n0

: (25)

Note in Eq. (24) that N1 � 1=8 � 0:125 is independent of
the factor g.

Figure 2 shows a plot of Nl as a function of l for three
cases corresponding to g � 0, 0:5, and �0:5. In Fig. 2,
N1 � 0:125 for all three cases, as expected. For l � 2,
0 1 2 3 4 5
l

0.00

0.05

0.10

0.15

N
l

g = 0.0
g = 0.5
g = - 0.5

FIG. 2. The dimensionless multiple moment factor Nl versus l
for several densities with g � 0, 0.5, and �0:5.
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however, the value of Nl decreases with increasing l and
depends strongly on the factor g (i.e., on the choice of
the density profile). In addition, for a given value of l > 1,
Nl increases with g; that is, the value of Nl is lower at
g � �0:5 than at g � 0:5. However, this does not neces-
sarily mean that the image-charge effects of a hollow
beam are weaker than those of a solid beam because the
beam envelopes X and Y given by Eqs. (22) and (23)
increase considerably with decreasing g. The physics
of image-charge effects is contained in X and Y.
Obviously, the values of X and Y are higher at g � �0:5
than at g � 0:5, which implies that the image-charge
effects of a hollow beam are stronger than those of a
solid beam.
IV. IMAGE-CHARGE EFFECTS ON RMS
MATCHED BEAMS

In this section, we investigate numerically the image-
charge effects on a matched beam using the analytical
results obtained in Sec. II, and show that for vacuum
phase advance �v < 90�, the higher-order image-charge
effects on the matched beam envelopes are negligibly
small for all beams with arbitrary beam density profiles
(including hollow density profiles) as well as for arbitrary
small apertures (including beams with large aspect
ratios). We pay special attention to a hollow beam ob-
served in a recent heavy ion beam experiment [26].

For present purposes, we assume that the rms emittan-
ces "x and "y are constant, i.e., "x � "y � ", and that the
beam density profile is given in Eq. (20). We also assume
that the alternating-gradient transport system is pre-
sented a step-function lattice (in Fig. 3) defined by [11]
FIG. 3. Plot of the normalized step-function lattice �q�s�
versus normalized propagating distance s=S for + � 0:5.
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�q�s� �

8>>>><
>>>>:

��q0; 0 � s=S < 0:25+;
0; 0:25+ � s=S < 0:5�1� 0:5+�;
��q0; 0:5�1� 0:5+� � s=S < 0:5�1� 0:5+�;
0; 0:5�1� 0:5+� � s=S < 0:5�2� 0:5+�;
��q0; 0:5�2� 0:5+� � s=S < 1;

(26)

where �q0 is a constant and + (0<+< 1) is the filling
factor. The strength of the alternating-gradient focusing
field can be measured in terms of the vacuum phase
advance �v. For step-function lattice defined in Eq. (26),
the vacuum phase advance �v satisfies [11]

cos�v � cosh’1�cos’1 � ’2 sin’1�

� ’2 sinh’1�cos’1 � 0:5’2 sin’1�; (27)

where

’1 � 0:5S+
��������
�q0

p
(28)

and

’2 �
1� +
+

’1: (29)

In the numerical analysis of the beam envelope
equations (18) and (19), it is convenient to use the dimen-
sionless parameters and normalized variables defined by
ŝs � s=S, ~aa � X=

������
S"

p
, ~bb � Y=

������
S"

p
, K̂K � KS=", R̂R �

R=
������
S"

p
, and ~��q�s� � S2�q�s�. For example, Fig. 4 shows

the matched beam envelope functions ~aa�s� � ~aa�s� S�
and ~bb�s� � ~bb�s� S� for �v � 800, K̂K � 10, + � 0:5, g �
�0:5 for beam propagation in free space as well as in a
cylindrical conducting pipe with R̂R � 4:0. It is evident in
Fig. 4 that the image-charge effects, including the con-
tributions from all orders, are negligibly small for a
hollow beam whose maximum envelopes are very close
FIG. 4. Plot of the normalized envelope functions ~aa and ~bb
versus normalized propagating distance s=S for �- � 800, K̂K �
10, g � �0:5, + � 0:5, and R̂R � 4:0.
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to the wall of the cylindrical pipe ( ~aamax � ~bbmax � 3:25
and R̂R � 4:0).

We have carried out comprehensive numerical studies
of the image-charge effects on the matched envelope
functions for different beam density profiles, including
beams with large aspect ratios. The numerical results
show that for vacuum phase advance �v < 90�, the total
image-charge effects, including higher-order ones, do not
affect significantly the matched beam envelopes for ar-
bitrary beam density profiles and arbitrarily small aper-
tures (conducting pipes).

V. IMAGE-CHARGE EFFECTS ON SLIGHTLY
MISMATCHED BEAMS AND ENVELOPE

INSTABILITIES

In a real device, it is almost impossible to obtain a
precisely matched beam because there exist some pertur-
bations on the beam propagation. These perturbations
may cause beam envelope instabilities, and the unstable
beam envelopes may result in particle beam losses. A
perturbation on the matched beam results in a mis-
matched beam in the alternating-gradient focusing sys-
tem. The beam envelope instability has already been
investigated in free space [11–15]. However, the image-
charge effects of the cylindrical conducting pipe on the
mismatched beams and the beam envelope instability
have not been studied until the present paper. In this
section, the envelope equations (18) and (19) are solved,
assuming "x � "y � ", for slightly mismatched beams to
find the unstable regions in the parameter space.

In order to obtain slightly mismatched beam enve-
lopes, following the method employed in Ref. [11], the
initial conditions for ~aa�s� and ~bb�s� at s � 0 are chosen to
be

~aa�0� � ~aa0�1� (� (30)

and

~bb�0� � ~bb0�1� (�; (31)

where ~aa0 and ~bb0 are the matched beam envelopes at s �
0, and ( is chosen to be in the region of 0 � j(j � 0:01.
Here, ( represents the perturbations caused by the noise
in the beam. Therefore, the initial perturbation to the
matched beam envelope is assumed to be as small as
1%. In the numerical calculations, the particle beams
are allowed to propagate over 40 periods. Further increas-
ing the number of the propagation periods does not affect
the determination of the unstable regions. In order to
determine the unstable regions for beam envelopes, we
run the envelope code and observe if the beam envelopes
are stable or unstable for given parameters, instead of
calculating the eigenvalues of the transfer matrix.

Figure 5 is a plot of K̂K � KS=" versus �v, showing
the unstable regions of the slightly mismatched beam
envelopes for + � 0:5 and g � 0 for three cases
014201-5



FIG. 7. Oscillations of the normalized beam envelope ~aa �
X=

������
S"

p
for both free-space and cylindrical conducting pipe

cases at K̂K � 10:0, �v � 130�, and A � ~aa0=R̂R � 0:9, corre-
sponding to a point in Fig. 5 where the envelopes are unstable
in both free space and cylindrical pipe.

FIG. 5. Plot of the unstable regions in the dimensionless
parameter space for the beam envelope evolution with + �
0:5 and g � 0 for three cases corresponding to (a) R � 1 (free
space), (b) A � ~aa0=R̂R � 0:75, and (c) A � ~aa0=R̂R � 0:90. Here,
the shaded region is the unstable region for the beam envelope
evolution with image-charge effects and A � ~aa0=R̂R � 0:90.
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corresponding to (a) R � 1 (free space), (b) A �
~aa0=R̂R � 0:75 (with cylindrical conducting pipe), and (c)
A � ~aa0=R̂R � 0:90 (with cylindrical conducting pipe). As
can be seen from Fig. 5, the unstable regions for all three
cases start around �v � 90�. The solid lines indicate the
boundary of the unstable region with image-charge ef-
fects from the cylindrical pipe for A � ~aa0=R̂R � 0:90,
whereas the dashed lines represent the boundary of un-
stable region without image-charge effects in free space.
The unstable region with image-charge effects for A �
~aa0=R̂R � 0:90 is shaded in Fig. 5. Although the lower
boundaries for the three cases almost coincide, there is
an observable difference between their upper boundaries.
FIG. 6. Oscillations of the normalized beam envelope ~aa �
X=

������
S"

p
for both free-space and cylindrical conducting pipe

cases with K̂K � 10:0, �v � 120�, and A � ~aa0=R̂R � 0:9, corre-
sponding to a point in Fig. 5 where the envelopes in free space
are unstable but the envelopes in cylindrical conducting pipe
are stable.
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The unstable region for cylindrical pipe case (i.e., with
image-charge effects) is obviously narrower than that
in the free-space situation (i.e., without image-charge
effects).

Figure 6 shows the oscillations of ~aa � X=
������
S"

p
for both

free-space and cylindrical conducting pipe cases at K̂K �
10:0, �v � 120�, and A � ~aa0=R̂R � 0:9, which corre-
sponds to a point in Fig. 5 where the envelopes in free
space are unstable but the envelopes in cylindrical con-
ducting pipe are stable. Figure 7 shows the oscillations
of ~aa � X=

������
S"

p
for both free-space and cylindrical con-

ducting pipe cases at K̂K � 10:0, �v � 130�, and A �
~aa0=R̂R � 0:9, which corresponds to a point in Fig. 5 where
the envelopes are unstable in both free space and cylin-
drical conducting pipe. Figure 7 indicates that the unsta-
ble growth rate of the beam envelopes in free space is
greater than that in cylindrical pipe. The results for free
space agree with those obtained by Qian and Davidson in
Ref. [11], in which they showed an unstable region for
90� <�v < 170�. It should be mentioned that the unsta-
ble regions are not sensitive to both+ and g for the case of
a cylindrical conducting pipe, which is similar to the fact
that the instability in the free-space case is insensitive to
+ as noted by Qian and Davidson [11].

VI. CONCLUSIONS

In this paper, rms envelope equations were derived and
analyzed for unbunched intense charged-particle beams
in an alternating-gradient focusing field and a cylindrical
metal pipe. All higher-order image-charge effects from
the cylindrical pipe were expressed in terms of so-called
multiple moment factors in the rms beam envelope equa-
tions, and the multiple moment factors were evaluated.
Numerical results showed that for vacuum phase advance
�v < 90�, the image-charge effects on the matched and
slightly mismatched beam envelopes are negligibly
014201-6



PRST-AB 6 B. L. QIAN, J. ZHOU, AND C. CHEN 014201 (2003)
small, at all orders, for all beams with arbitrary beam
density profiles (including hollow density profiles) as well
as for arbitrary small apertures (including beams with
large aspect ratios). However, the main unstable region
for the envelope evolution with image-charge effects,
which occurs for 90� <�v < 270�, depending on the
value of the normalized beam intensity SK=", was found
to be narrower than its counterpart without image-charge
effects.
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Chaotic particle motion and beam halo formation induced by image-charge
effects in a small-aperture alternating-gradient focusing system
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It is shown with a test-particle model that image-charge effects induce a new mechanism for chaotic
particle motion and halo formation in an intense charged-particle beam propagating through an
alternating-gradient focusing channel with a small aperture, circular, perfectly conducting pipe. This
mechanism occurs for a well-matched beam with the Kapchinskij–Vladimirskij distribution. The
percentage of beam loss to the conductor wall is calculated as a function of propagating distance and
aperture size. ©2003 American Institute of Physics.@DOI: 10.1063/1.1622388#
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Alternating-gradient accelerators have wide applicatio
in basic scientific research, medicine and industrial proce
ing. Many accelerators that are being constructed or p
posed for basic scientific research such as heavy ion fu
accelerators and spallation neutron sources are require
handle high average power and high brightness beams
important aspect in the design of periodically focused bea
in such accelerators and klystrons for the next linear colli
~NLC! is to prevent the beams from developing halos a
chaos which may cause beam losses to the conducting w
of the accelerating structures.1–7 The problem of halo forma-
tion and beam losses is of a serious concern in the desig
small-aperture focusing transport systems8,9 that are often re-
quired in order to keep accelerator costs manageable.

Two key mechanisms for halo formation have been st
ied using analytical models1–3 and self-consistent simula
tions with particle-in-cell ~PIC!4–7 and Green’s function
techniques. It has been shown in the test-particle model
chaotic particle motion and halo formation occur when
root-mean-squared~rms! beam envelopes have a sufficie
large mismatch in a constant focusing channel1 or when the
beam density is sufficiently nonuniform in an alternativ
gradient focusing channel.3 Until the present analysis, how
ever, most published analytical results on beam halo for
tion have been based on free-space models in which
effects on halo formation have been ignored.

In this Letter, we report a new mechanism for chao
particle motion and halo formation in intense charge
particle beams. In particular, use is made of a test-part
model to investigate the dynamics of rms matched inte
charged particle beams propagating through an alterna
gradient quadrupole magnetic field and a small aperture.
elliptical cross section of the beam and the circular cr
section of the pipe are incorporated. While the present mo
allows for nonuniform beams with elliptic symmetry, the e
fects of image charges on halo formation are illustrated w
a uniform ~Kapchinskij–Vladimirskij, KV! beam
distribution.10 It is shown that the image-charge-induc
fields are nonlinear, and that they induce chaotic particle m

a!Electronic mail: jeaIzhou@mit.edu
4201070-664X/2003/10(11)/4203/4/$20.00
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tion and halo formation. While it has been recognized
cently that image-charge effects have negligibly small infl
ence on the rms beam envelope dynamics11 for vacuum
phase advance less than 90°, our results show that im
charge effects play an important role in halo formation a
cause significant beam losses as the aperture decreases

We consider an rms-matched continuous inten
charged-particle beam propagating in the longitudinal dir
tion through an alternating-gradient quadrupole magn
field with axial periodicity lengthS in a perfectly conducting
round pipe with radiusR. The beam density is assumed to
n5n(x2/a21y2/b2). An analytical expression for the scala
potential can be obtained for the assumed density profile

f52pabqE
0

` ds

A~a21s!~b21s!
E

0

T

n~T!dT

1pabqF E
0

` ds

A~a21s!~b21s!
E

0

T1
n~T1!dT1

22 lnS R

r D E
0

`

n~T1!dT1G , ~1!

where T5x2/(a21s)1y2/(b21s), T15x1
2/(a21s)

1y1
2/(b21s), r 5(x21y2)1/2, x15R2x/(x21y2), and y1

5R2y/(x21y2).
For the KV beam, the periodic beam envelope functio

a(s)5a(s1S) andb(s)5b(s1S) obey11

d2a

ds2
1kq~s!a22KF 1

a1b
1(

l 51

`
a~a22b2!2l 21

R4l
Nl G5

ex
2

a3
~2!

and

d2b

ds2
2kq~s!b22KF 1

a1b
1(

l 51

`
b~b22a2!2l 21

R4l
Nl G5

ey
2

b3
,

~3!

where Nl5(2/p)@G( l 1 1
2)/G( l 12)#2 with G(x) being the

standard gamma function,ex54ex rms andey54ey rms are 4
times the beam rms emittances in thex and y directions,
3 © 2003 American Institute of Physics
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respectively,s5bbct is the axial coordinate, the periodi
function kq(s)5kq(s1S)5(q/gbmbbc)(]Bx

q/]y) de-
scribes the quadrupole focusing field,Nb5pab*0

`n(u)du is
the number of particles per unit axial length,K
52q2Nb /(g3mbb

2c2) is the generalized beam perveanc
f(x,y,s) and bbf(x,y,s) are the scalar and axial vecto
potentials associated with the space charge and current o
intense charged particle beam, respectively,q andm are the
particle charge and rest mass, respectively,c is the speed of
light in vacuum,bbc is the average axial beam velocity, an
gb5(12bb

2)21/2 is the relativistic mass factor.
In the paraxial approximation, the transverse equati

of motion for an individual test particle can be expressed a12

d2x

ds2
1kq~s!x1

q

gb
3mbb

2c2

]f

]x
50, ~4!

d2y

ds2
2kq~s!y1

q

gb
3mbb

2c2

]f

]y
50. ~5!

It is important to specify initial conditions for the tes
particle motion that are consistent with the assumed be
density, which is accomplished by the particular choice of
initial distribution function3 at s5s0 , i.e., f b(x,y,x8,y8,s0)
5Nbd(W21)/p2exey , where x85dx/ds, and W is the
variable defined by W5x2/a21(ax82xa8)2/ex

21y2/b2

1(by82yb8)2/ey
2. Here,a, a8, b, andb8 denote the ‘‘ini-

tial’’ values ats5s0 . The dynamical Eqs.~4! and ~5! com-
pletely describe the model.

A test-particle simulation module is added to the exist
two-dimensional periodically focused beam~PFB2D! code
for studies of the test-particle dynamics described in Eqs.~4!
and~5!, where an analytical expression forf is derived for a
uniform density beam. The code uses the standard IM
Runge–Kutta integration routine. For the results discus
below, a maximum accumulative relative error of 1024

which is weighted true error taken over all dynamical va
ables and all steps froms50 to the end of this computation
is used to give sufficiently accurate results in the simulatio

For the KV beam distribution,10 as the pipe radius goe
to infinity, the image charge fields vanish. Therefore, in
free-space case, the self-fields have a linear dependencex
andy within the beam boundaryx2/a21y2/b251. The equa-
tions of motion reduce to uncoupled Hill’s equations, and
particle orbits are confined within the beam envelope, p
vided the latter is stable.

As the pipe radius gets close to the beam envelope,
fields become nonlinear due to the image charge on the p
The particle orbits are nonintegrable, and can become
otic. Equations~4! and~5! are solved numerically, where th
periodic a(s) and b(s) are obtained numerically from th
envelope Eqs.~2! and ~3!. We have benchmarked our nu
merical results against the published results for the fr
space case in Ref. 3. In the free space case, all the part
with W(s50)<1 are regular and theirW’s are constant.

The best way to illustrate the image charge effects
inducing chaotic particle motion and halo formation is
plotting the range ofW for various initial conditions, instead
of using the usual Poincare´ surface-of-section plot.3 In Fig. 1
Downloaded 26 Oct 2006 to 198.125.176.45. Redistribution subject to AIP
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the range of transverse energyWx5x2/a21(ax82xa8)2/e2

is plotted for test particles propagating over 2000 lattice
riods for two cases~a! free space (R̂[R/AeS5`) and ~b!
R̂53.8. In the simulations, we use a periodic step-funct
lattice with filling factor h @see Eq.~26! in Ref. 11#. The
system parameters areh50.5, KS/ex510.0,ex5ey5e, and
vacuum phase advancesv580.0°, which correspond to
those in the High-Current Experiment~HCX! at Lawrence
Berkeley National Laboratory~LBNL !.9 For these param-
eters, the maximum value of the normalized envelope
a(0)/AeS>3.25. The 115 test particles are loaded uniform
at s50 between the interval 0<Wx<1.15 along thex8 axis.
Because all of the test particles have (y(0),y8(0))50 ini-
tially, their trajectories remain in the (x,x8) plane of the
phase space. As shown in Fig. 1~a!, the outermost
Kolmogorov–Amold–Moser~KAM ! surface for the beam
core in the free space case is located atx/a51.03 which is
slightly outside the beam boundary. There is a continuum
KAM surfaces forx(0)/a(0)<1.03, whereWx is conserved.
The particles inside the beam core have regular motion
cannot escape to form a halo. As the pipe radiusR decreases,
the conductor wall intersects the chaotic sea. Furtherm
the image force induced by the conductor wall becomes

FIG. 1. Plots of the range ofWx for test particles propagating over 200
lattice periods for two cases~a! free spaceR̂5` and~b! R̂53.8. The system
parameters are chosen to beh50.5, KS/ex510.0, ex5ey5e, and sv
580°. The 115 test particles are loaded uniformly ats50 between the
interval 0<Wx<1.15 along thex8 axis in phase space.
 license or copyright, see http://pop.aip.org/pop/copyright.jsp



nt

o

ar

-

-
pa
x-
o

le

o
t

th

en-
e
age
rge
he

lcu-
the
elf-

w-
elf-
oss,
t

n-
ow-
ch

ter

ig.

s a

e

4205Phys. Plasmas, Vol. 10, No. 11, November 2003 Chaotic particle motion and beam halo formation . . .
portant and the KAM surface for the beam core moves i
the beam interior, reachingx/a50.96, as shown in Fig. 1~b!
for R̂53.8. In this case some particles inside the beam c
will escape to form a halo and eventually strike the wall.

The locations and evolution of the chaotic particles
illustrated in Fig. 2, where the transverse energyWx is plot-
ted for 2000 test particles loaded ats50 on the beam bound
ary Wx(0)51 in the phase space with the initial phasesf0

5tan21@(S/e)1/2a(0)x8(0)/x(0)# uniformly distributed from
0 to 2p for the same system parameters as in Fig. 1~b!. Those
test particles with initial phases in the intervals 0<f0

<0.1p, 0.9p<f0<1.1p, and 1.9p<f0<2p are regular
and remain inside the beam withWx>1. The other test par
ticles are chaotic and gain energy. Some of the chaotic
ticles in Fig. 2 strike the wall after tens of periods. An e
ample of such a chaotic particle is illustrated in comparis
with a core particle in Fig. 3, whereWx is plotted as a func-
tion of s for two test particles with initial phases~a! f0 /p
50 and~b! f0 /p50.35, which correspond to a halo partic
and a core particle, respectively.

Finally, the beam loss is computed as a function
propagation distance and pipe radius. As an example,

FIG. 2. Plots ofWx for 2000 test particles with the same system parame
as in Fig. 1~b! at two axial locations~a! s/S550 and~b! s/S5100. The test
particles are initially loaded uniformly with phasef0 ranging from 0 to 2p
on the beam boundaryWx(0)5(x(0)/a(0))21(a(0)x8(0)/e)251 in the
phase space.
Downloaded 26 Oct 2006 to 198.125.176.45. Redistribution subject to AIP
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results are shown in Fig. 4 forh50.5, KS/ex510.0, ex

5ey5e, sv580°, and four choices of the pipe radius wi
R̂53.8, 3.9, 4.0, and 4.5. The critical value ofR̂ for the
outermost KAM surface adjacent to the beam core to p
etrate the beam is estimated to beR̂55.5. The beam loss rat
increases with the decreasing pipe radius, where the im
effects play a more important role in the total space cha
force. When the maximum beam envelope fills 86% of t
pipe, the beam loss reaches 8% ats51000S. Although the
results shown in Fig. 4 are based on the test-particle ca
lations, they provide order of magnitude estimates for
actual beam losses, which are being studied using s
consistent simulations.

The results of this paper, which are rigorous to the lo
est order, are useful to benchmark PIC and other s
consistent studies of beam halo formation and beam l
which are known to have noise problems13 and disagreemen
with the experimental measurements.6,7 Because our results
are obtained for ideal KV distribution, they are not a qua
titative measure of the beam loss in a real experiment. H
ever, they do provide an indication of the amount of su
beam loss for a uniform density beam in a long~.100 peri-

s

FIG. 3. Plots ofWx vs s for two test particles with initial phases~a!
f0 /p50 and ~b! f0 /p50.35 for the same system parameters as in F
1~b!.

FIG. 4. Plots of the percentage of particles striking the conductor wall a
function of propagation distance forh50.5, KS/ex510.0, ex5ey5e, sv

580° and several choices ofR̂[R/AeS. Here, 10 000 test particles with th
KV distribution initially are used in the simulations.
 license or copyright, see http://pop.aip.org/pop/copyright.jsp
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ods! focusing system. They also suggest that in short~2 to 30
periods! systems such as the existing Neutralized Transp
Experiment~NTX! and High-Current Experiment~HCX!,9

imperfections such as charge-density fluctuations, misma
and focusing field nonlinearity and error may play a mo
important role than image charge effects on beam halo
duction.

To summarize, we have shown using a test-part
model that in a small-aperture alternating-gradient focus
channel, image-charge effects induce a new mechanism
chaotic particle motion and halo formation in intense char
particle beams. This mechanism occurs for well-match
beams with the ideal Kapchinskij–Vladimirskij~KV ! distri-
bution. The percentage of beam loss has been calculated
function of distance and aperture size.
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Abstract

The image-charge effects on an intense charged-particle beam propagating through an alternating-gradient focusing

channel with a small aperture, circular, perfectly conducting pipe are studied using a test-particle model. For a well-

matched elliptical beam with the Kapchinskij–Vladimirskij (KV) distribution, it is found that halo formation and beam

loss are induced by nonlinear fields due to image charges on the wall. The halo formation and chaotic particle motion is

found to depend sensitively on the system parameters: the occupancy of the quadrupole focusing field, the vacuum

phase advance, the beam perveance, and the ratio of the beam size to the aperture. Furthermore, the percentage of

beam loss to the conductor wall is calculated as a function of propagating distance and aperture.

r 2005 Elsevier B.V. All rights reserved.

PACS: 41.85.Ja; 41.75.�i

Keywords: Intense charged-particle beam; Alternating-gradient focusing
1. Introduction

Alternating-gradient accelerators required to
handle high average power and high brightness
beams are being constructed or proposed for basic
scientific research such as heavy ion fusion, high-
energy physics, high-energy density physics, and
spallation neutron sources. An important aspect in
the design of periodically focused beams in such
accelerators and RF drivers for the next linear
e front matter r 2005 Elsevier B.V. All rights reserve

ma.2005.03.010

ng author. Tel.: +1617 253 1669.

ss: jea_zhou@mit.edu (J. Zhou).
collider (NLC) is to prevent the beams from
developing halos and chaos which may cause beam
losses to the conducting walls of the accelerating
structures [1–7]. The problem of halo formation
and beam losses is of a serious concern in the
design of small-aperture focusing transport sys-
tems [8,9] that are often required in order to keep
accelerator costs manageable.
Two key mechanisms for halo formation,

namely, mismatch in a constant focusing channel
[1] and non-uniform density in an alternating-
gradient focusing channel [3], have been studied
using analytical models [1–3] and self-consistent
d.

www.elsevier.com/locate/nima
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simulations with particle-in-cell (PIC) [4–7] and
Green’s function techniques. A new mechanism
for chaotic particle motion and halo formation
due to the image-charge effects in intense charged-
particle beams has been reported recently [10]. In
particular, use is made of a test-particle model to
investigate the dynamics of RMS matched intense
charged particle beams propagating through an
alternating-gradient quadrupole magnetic field
and a small aperture.

We consider an RMS-matched continuous
intense charged-particle beam propagating in the
longitudinal direction through an alternating-
gradient quadrupole magnetic field with axial
periodicity length S in a perfectly conducting
round pipe with radius R: The beam density is
assumed to be n ¼ nðx2=a2 þ y2=b2

Þ: An analytical
expression for the scalar potential can be obtained
for the assumed density profile,

f ¼ � pabq

Z1

0

dsffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða2 þ sÞðb2

þ sÞ

q
ZT

0

nðTÞ dT

þ pabq

Z1

0

dsffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða2 þ sÞðb2

þ sÞ

q
ZT1

0

nðT1Þ dT1

2
64

�2 ln
R

r

� �Z1

0

nðT1Þ dT1

3
5 ð1Þ

whereT ¼ x2/(a2+s)+y2/(b2+s),T1¼ x2
1=ða

2 þ sÞ

þy2
1=ðb

2
þ sÞ; r ¼ (x2+y2)1/2, x1 ¼ R2x/(x2+y2),

and y1 ¼ R2y=ðx2 þ y2Þ: The periodic beam envel-
ope functions aðsÞ ¼ aðs þ SÞ and bðsÞ ¼ bðs þ SÞ

can be calculated from the envelope equations [11].
In the paraxial approximation, the transverse

equations of motion for an individual test particle
can be obtained [10] with the potential given in Eq.
(1). While initial results of test-particle studies
have been reported [10], the purpose of this paper
is to discuss the results of parametric studies based
on the test-particle model.
x/a

Fig. 1. Poincaré surface-of-section plot for the trajectories of

100 test particles for propagation over 400 lattice periods in the

phase plane (x,y) with pipe radius R̂ ¼ 4:0: The system

parameters are chosen to be Z ¼ 0:5; KS=�x ¼ 10:0; �x ¼ �y ¼

�; and sv ¼ 801:
2. Image-charge effects

For the Kapchinskij–Vladimirskij (KV) beam
distribution [12], as the pipe radius goes to infinity,
the image charge fields vanish. Therefore, in the
free-space case, the self-fields have a linear
dependence on x and y within the beam boundary
x2=a2 þ y2=b2

¼ 1: The equations of motion re-
duce to uncoupled Hill’s equations, and the
particle orbits are confined within the beam
envelope, provided the latter is stable.
As the pipe radius gets close to the beam

envelope, the fields become nonlinear due to the
image charge on the pipe. The particle orbits are
non-integrable, and can become chaotic. As shown
in Fig. 1, the Poincaré surface-of section maps of
the trajectories of 100 test particles as the test
particles pass each lattice period is plotted for an
initial KV beam with pipe radius R̂ ¼ R=

ffiffiffiffiffi
�S

p
¼

4:0: In the simulations, we use a periodic step-
function lattice with occupancy Z (see Eq. (26) in
Ref. [11]). The system parameters are Z ¼ 0:5;
KS=�x ¼ 10:0; �x ¼ �y ¼ � ¼ 4�rms; and vacuum
phase advance sv ¼ 801 which correspond to those
in the High-Current Experiment (HCX) at Lawr-
ence Berkeley National Laboratory (LBNL) [9]. A
halo develops around the dense beam core.
It is important to specify initial conditions for

the test-particle motion that are consistent with the
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assumed beam density, which is accomplished in the
simulation shown in Fig. 1 by the particular choice
of an initial distribution function at s ¼ s0 ¼ 0;
i.e., f bðx; y; x

0; y0; s0Þ ¼ NbdðW � 1Þ
�
p2�x�y; where

x0 ¼ dx=ds; and W is the variable defined by
W ¼ x2=a2þðax0�xa0Þ

2=�2xþy2=b2
þðby0�yb0Þ2=�2y:

Here, a; a0; b; and b0 denote the ‘‘initial’’ values at
s ¼ s0 ¼ 0:

The best way to illustrate the image charge
effects on inducing chaotic particle motion and
0.0 0.2 0.4 0.6 0.8 1.0 1.2
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W
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Fig. 2. Plot of the range of W x for test particles propagating

over 2000 lattice periods for R̂ ¼ 3:8; Z ¼ 0:5; KS=�x ¼ 10:0;
�x ¼ �y ¼ �; and sv ¼ 801: The 115 test particles are loaded

uniformly at s ¼ 0 between the interval 0pW xp1:15 along the

x0-axis in phase space.
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Fig. 3. Plots of the outermost KAM surface location XKAM=a

as a function of the vacuum phase advance sv for Z ¼ 0:5;
KS=�x ¼ 10:0; �x ¼ �y ¼ �; and two cases: (a) a=R ¼ 80%; and
(b) a=R ¼ 85%:
halo formation is by plotting the range of W for
various initial conditions, instead of using the
usual Poincaré surface-of-section plot [3]. In Fig.
2, the range of transverse energy W x ¼ x2=a2 þ

ðax0 � xa0Þ
2=�2 is plotted for test particles propa-

gating over 2000 lattice periods with R̂ ¼ 3:8; Z ¼

0:5; KS=�x ¼ 10:0; �x ¼ �y ¼ �; and sv ¼ 801: For
these parameters, the maximum value of the
normalized envelope is að0Þ=

ffiffiffiffiffi
�S

p
ffi 3:25: The

115 test particles are loaded uniformly at s ¼ 0
between the interval 0pW xp1:15 along the x0-
axis. Because all of the test particles have ðyð0Þ;
y0ð0ÞÞ ¼ 0 initially, their trajectories remain in the
ðx; x0Þ plane of the phase space. For free-space
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Fig. 4. Plots of W x vs f0 for 2000 test particles at axial distance

s=S ¼ 50 for Z ¼ 0:5; KS=�x ¼ 10:0; �x ¼ �y ¼ �; and two cases:

(a) sv ¼ 601; and (b) sv ¼ 801: The test particles are initially

loaded uniformly with phase f0 ranging from 0 to 2p on the

beam boundary W xð0Þ ¼ 1 in the phase space.
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cases, the particles inside the beam core have
regular motion and cannot escape to form a halo,
so the outermost Kolmogorov–Arnold–Moser
(KAM) surface for the beam core is located
outside the beam boundary and there is a
continuum of KAM surfaces where W x is con-
served. As the pipe radius R decreases, the
conductor wall intersects the chaotic sea. Further-
more, the image force induced by the conductor
wall becomes important and the outermost KAM
surface for the beam core moves into the beam
interior, reaching x=a ¼ 0:96; as shown in Fig. 2
for R̂ ¼ 3:8: In this case some particles inside the
beam core will escape to form a halo and
eventually strike the wall.
0.0 0.5 1.0 1.5 2.0
0.0
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3. Dependence of the image-charge effects on

system parameters

The halo formation and chaotic particle motion
dependent sensitively on the system parameters:
the occupancy of the quadrupole focusing field,
vacuum phase advance, the beam intensity, and
the ratio of the beam size to the aperture.

As the vacuum phase advance decreases, the
regular region of particle motion decreases, which
means that for smaller vacuum phase advance
more particles are in the chaotic sea and can form
halo. As shown in Fig. 3 the outermost KAM
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Fig. 5. Plots of the outermost KAM surface location XKAM=a

as a function of the occupancy of the quadrupole focusing field

Z; for, KS=�x ¼ 10:0; �x ¼ �y ¼ �; sv ¼ 801 and two cases: (a)

a=R ¼ 80% and (b) a=R ¼ 85%:
surface location relative to the beam boundary
decreases as the vacuum phase advance for two
cases: (a) a=R ¼ 80% and (b) a=R ¼ 85% with
Z ¼ 0:5; KS=�x ¼ 10:0; and �x ¼ �y ¼ �: However,
the rate of the halo production decreases as the
vacuum phase advance decreases. The locations
and evolution of the chaotic particles are illu-
strated in Fig. 4, where the transverse energy
W xðs=S ¼ 50Þ is plotted for 2000 test particles
loaded at s ¼ 0 on the beam boundary W xð0Þ ¼ 1
in the phase space with the initial phases f0 ¼

tan�1 ðS=�Þ1=2að0Þx0ð0Þ=xð0Þ
h i

uniformly distribu-
ted from 0 to 2p for two cases: (a) sv ¼ 601 and (b)
sv ¼ 801: Those regular particles remain inside the
beam with W x ffi 1; while the other test particles
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W
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Fig. 6. Plots of W x vs f0 for 2000 test particles at axial distance

s=S ¼ 50 for KS=�x ¼ 10:0; �x ¼ �y ¼ �; sv ¼ 801; and two

cases: (a) Z ¼ 0:2 and (b) Z ¼ 0:8: The test particles are initially
loaded uniformly with phase f0 ranging from 0 to 2p on the

beam boundary W xð0Þ ¼ 1 in the phase space.
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are chaotic and gain energy with W x41: It is
shown in Fig. 4 that for sv ¼ 801 much more halo
is form with W x41 than sv ¼ 601 at s=S ¼ 50:

Figs. 5 and 6 show the dependence of the halo
formation and chaotic particle motion on the
occupancy of the quadrupole focusing field. As the
occupancy of the quadrupole focusing field de-
creases, the regular region of particle motion
decreases, which means that for smaller occupancy
of the quadrupole focusing field more particles are
in the chaotic sea. However, the rate of the halo
production decreases as the occupancy of the
quadrupole focusing field decreases. It is shown in
Fig. 6 that the halo for Z ¼ 0:2 is more pronounced
than that for Z ¼ 0:8 at s=S ¼ 50:

Finally, Fig. 7 shows the dependence of the halo
formation and chaotic particle motion on the
beam intensity. As the beam intensity increases,
more halo occurs.
4. Summary

We reviewed a mechanism for chaotic particle
motion and halo formation due to image-charge
effects in intense charged-particle beams in a
small-aperture alternating-gradient focusing chan-
nel. This mechanism occurs for well-matched
beams with the ideal Kapchinskij–Vladimirskij
(KV) distribution. We also discussed the depen-
dence of the chaotic particle motion and halo
formation on the occupancy of the quadrupole
focusing field, the vacuum phase advance, the
beam intensity, and the ratio of the beam size to
the aperture.
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A theory of nonrelativistic, laminar, elliptic-beam formation is presented. The beam is shown to have
the one-dimensional Child-Langmuir flow form. An analytic expression for the electrostatic potential
outside the beam is derived. Equipotentials corresponding to electrode surfaces are computed numerically.
The effectiveness of the electric field formed by the electrodes in focusing and preserving the elliptic, 1D
Child-Langmuir flow beam is verified via 3D ray-tracing simulations.
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I. INTRODUCTION

Electron beams of elongated elliptic cross sections have
generated great interest in vacuum electronics [1] because
of their low space-charge energy and efficient coupling to
rf structures when compared to circular beams. It is well
known that high space charge reduces conversion effi-
ciency in conventional microwave tubes employing circu-
lar beams. Presently, there are vigorous activities in the
development of sheet-beam traveling wave amplifiers
[2,3], klystrons [4], and focusing systems [5,6].

In high-intensity ion and electron accelerators, beams
often exhibit nonlaminar flows such as large-amplitude
density fluctuations [7], mismatched envelope oscillations
[8], emittance growth, chaotic particle orbits, beam inter-
ception, and difficulty in beam focusing and compression.
Many of these effects are due to beam mismatch or non-
equilibrium behavior. Elliptic beams may allow simplified
and more natural matching [9] between beam injectors and
commonly used magnetic focusing lattices, reducing the
emittance growth associated with beam mismatch.

Although elliptic beams present numerous advantages,
their inherent three-dimensional nature has made diode
design a challenging process, both analytically and nu-
merically. For the applications discussed above, desirable
beam characteristics include uniform current density, par-
allel flow, and zero magnetic flux threading the emitter—
properties consistent with one-dimensional Child-
Langmuir (C-L) [10] flow, in which the electrostatic po-
tential varies as� / z4=3, where z is the beam propagation
distance. In general, however, such flows are difficult to
produce [11]. Recent studies of 2D and 3D [12–16] ex-
tensions of the Child-Langmuir law in an infinite applied
magnetic field have shown that the beam exhibits signifi-
cant current density enhancements near the beam-vacuum
boundary. In the absence of an infinite confining magnetic
field, the beam will tend to spread in phase space, resulting
in a degradation of beam quality. As we will show in this
paper, it is possible to induce the space-charge flow in a 3D
system to take the 1D Child-Langmuir flow form by con-
05=8(1)=014201(5) 01420
structing a 3D external electrode geometry that is consis-
tent with the 1D Child-Langmuir electric field within the
beam.

In order to enforce 1D Child-Langmuir [10] flow in a
beam interior, the diode design problem requires solving
Laplace’s equation for the exterior electric potential with
Cauchy boundary conditions on the beam-vacuum bound-
ary. General solutions of such elliptic-equation Cauchy
problems are difficult or impossible to obtain [11,17],
and standard numerical methods fail due to the exponential
growth of errors, which is characteristic of such problems.
Nonetheless, Pierce [18], in a classic result, analytically
solved the exterior problem for an infinite 2D sheet-beam
geometry (i.e., neglecting end effects). By employing the
Cauchy-Riemann conditions, Pierce could write the poten-
tial outside the beam as the real part of a complex analytic
function. He found that the function � / Re��z� ix�4=3�,
where x is the transverse distance from the beam edge,
satisfies the Child-Langmuir condition, � / z4=3, on the
beam edge (x � 0). This solution possesses an equipoten-
tial surface that corresponds to an external focusing elec-
trode—the ‘‘Pierce electrode’’—which is inclined at a
67.5� angle (3�=8 rad) to the beam.

Later, Radley [19] employed a Laplace transform tech-
nique to determine the exterior potential for a beam of
circular cross section. Nakai [20] attempted to generalize
Radley’s technique to the 3D elliptic-beam problem, but
neglected the full functional dependence of the angular
Mathieu functions, and as a result, arrived at a simple, but
incorrect expression for the exterior potential.

In this paper we present a new analytic technique, based
on a 3D generalization of [19], to determine elliptic-beam
shaping electrodes which may be used independently or in
conjunction with 3D modeling codes. A sample set of
electrodes is computed explicitly for a one microper-
veance, large aspect ratio (10:1) elliptic-beam diode. The
geometry is tested via 3D OMNITRAK [21] simulations to
show nearly ideal 1D Child-Langmuir space-charge-
limited flow with high laminarity and a constant elliptic
cross section.
1-1  2005 The American Physical Society
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For the design of physical beam diodes, designers,
guided by analytic results, make use of ray-tracing codes
such as the 2D EGUN [22] and 3D OMNITRAK [21], or
particle-in-cell codes such as MICHELLE [23] and WARP

[24]. These codes can be used as part of an iterative
optimization process in order to arrive at an approximate
set of external electrodes which support the desired beam
cross section. The analytic elliptic-beam results of this
paper facilitate the numerical design of nonaxisymmetric
diodes, which are complicated by the presence of an extra
dimension in the electrode geometry optimization. In ad-
dition, the present analytic results provide a useful protocol
for benchmarking new 3D simulation tools.
II. THEORY

We consider a nonrelativistic charged-particle beam of
length d and elliptic cross section with semimajor axis a
and semiminor axis b, as shown in Fig. 1. The charged
particles are emitted from a flat elliptic plate, held at
potential � � 0, in the z � 0 plane, and collected by
another flat elliptic plate, held at potential � � �d, in
the z � d plane. The cold fluid equations describing the
beam interior are

@n=@t�r 
 �nV� � 0; (1)

@V=@t� �V 
 r�V � ��q=m�r�; (2)

r2� � �4�qn; (3)

for the region x2=a2 � y2=b2 � 1 and 0 � z � d. In
Eqs. (1)–(3), V is the flow velocity, and n is the density
of particles, each of mass m and charge q. Note that,
z = 0

emitter

z

z = d

collector

x

y

b

a
f

d

 

FIG. 1. A beam of elliptic cross section (semimajor axis a,
semiminor axis b) is shown in Cartesian and elliptic-cylindrical
coordinates. The beam is emitted from an elliptic plate at � � 0
in the z � 0 plane and collected by an elliptic plate at� � �d in
the z � d plane. The beam fills the area enclosed by the surface
� � �0. In any z plane, lines of constant � are ellipses, and lines
of constant � are semihyperbolas.
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consistent with the nonrelativistic approximation, we ne-
glect any self-magnetic field. In the beam exterior, the
potential satisfies Laplace’s equation

r2� � 0: (4)

The 1D steady-state solution to the interior problem
defined by Eqs. (1)–(3) can be obtained by using the plate
potentials as boundary conditions for Poisson’s equation
and imposing the constraint that particles emerge from the
� � 0 emitter with zero velocity, i.e., the space-charge-
limited boundary condition. This results in the well-known
1D Child-Langmuir [10] solution for laminar, space-
charge-limited flow with V�z� � êz�2q�d=m�1=2�z=d�2=3,
n�z� � ��d=9�qd2��z=d��2=3, and ��z� � �d�z=d�4=3.
For example, an electron diode of length d � 5:2 mm
and diode voltage �d � 5 kV produces a current density
of 3 A=cm2, while a Cs� ion diode of the same length and
voltage generates a current density of 6 mA=cm2.

To determine the potential distribution in the beam ex-
terior, we solve Laplace’s equation (4) while matching the
interior and exterior electric fields on the elliptic-beam
boundary. From the C-L solution, the matching conditions
on the elliptic-beam boundary imply, for 0 � z � d,

�jbeam bound � �d�z=d�
4=3; (5)

�n̂ 
 r��jbeam bound � 0; (6)

where n̂ is a unit vector normal to the elliptic-beam bound-
ary x2=a2 � y2=b2 � 1. We aim to find exterior equipo-
tential surfaces corresponding to the emitter and collector
potentials � � 0 and � � �d, respectively. If electrodes
at the given potentials are made to lie along these surfaces,
they will enforce the conditions in Eqs. (5) and (6) on the
interval 0 � z � d.

It is useful to introduce the elliptic-cylindrical coordi-
nate system ��; �; z�, i.e.,

x� f cosh���cos���; y� f sinh��� sin���; z� z;

(7)

where 0 � � <1 is a radial coordinate, 0 � �< 2� is an
angular coordinate, and f �

�����������������
a2 � b2

p
is the distance from

the center of the ellipse to either of its foci, as illustrated in
Fig. 1. The elliptic-beam boundary is specified by the
surface � � �0 � coth

�1�a=b�. In these coordinates,
Laplace’s equation may be expressed

2

f2�cosh2�� cos2��

�
@2�

@�2
�
@2�

@�2

�
�
@2�

@z2
� 0; (8)

and the boundary conditions in Eqs. (5) and (6) are

�@�=@��j���0 � 0; (9)
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FIG. 2. The Hankel contour in the complex k plane is taken
around the �1< k< 0 branch cut.
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�@�=@��j���0 � 0; (10)

�j���0 � �d�z=d�4=3: (11)

Expressing a product solution as ���; �; z� �
���� ���Z�z� and applying separation of variables to
Eq. (8), we find

d2Z=dz2 � k2Z � 0; (12)

d2 =d�2 � ��� 1
2k
2f2 cos2�� � 0; (13)

d2�=d�2 � ��� 1
2k
2f2 cosh2��� � 0; (14)

where k and � are separation constants. Equation (12) leads
simply to exponential solutions Z � ekz. Equation (13) is
the angular Mathieu equation, but we are only interested in
those angular Mathieu functions which have a periodicity
of 2� and are even about � � 0 and � � �=2, since the
boundary conditions of Eqs. (10) and (11) possess these
same symmetries. Such solutions exist only for discrete
eigenvalues of the separation constant �, and we adopt the
convention of Morse and Feshbach [25] to denote these
angular Mathieu functions by  � Se2n�kf; �� and the
associated normalization constants Me

2n �R
2�
0 �Se2n�kf; u��2du, where n is a non-negative integer

indexing the eigenvalues �, as detailed in Ref. [25]. The
corresponding radial solutions, � � Je2n�kf; �� and � �
Ne2n�kf; ��, are radial Mathieu functions of the first and
second kind, respectively.

Any superposition of product solutions of the separated
equations must satisfy Laplace’s equation (8), and hence
we write

���; �; z� �
Z
C
dkA�k�ekzG�kf; �; ��; (15)

where

G�h; �; �� �
X1
n�0

!2n�h�Se2n�h; ���Je2n�h; ��Ne02n�h; �0�

� Ne2n�h; ��Je02n�h; �0��: (16)

We have chosen !2n�h� � �Me
2n�

�1
R
2�
0 Se2n�h; u�du, and

the primes denote differentiation with respect to �. The
corresponding expression in Nakai [20] does not have
Se2n�h; �� and omits the normalization factor !2n.

The expansion in Eq. (15) assures that � satisfies
Laplace’s equation (8), and it is readily seen that the
particular linear combination of radial Mathieu functions
in Eq. (16) satisfies the boundary condition in Eq. (9).
Moreover, using the Wronskian for the radial Mathieu
functions and the orthogonality of the angular Mathieu
functions, it can be shown that our definition of !2n assures
G�h; �; �0� � 1, and thereby the boundary condition in
Eq. (10). Equations (11) and (15) now imply
01420
���0; �; z� �
Z
C
A�k�ekzdk � �d�z=d�

4=3: (17)

We follow the analysis by Radley [19] and make use of the
integral representation of the gamma function "�u� [26] to
obtain

z4=3 �
1

"�� 4
3�

i

2 sin�4�3 �

Z
C
ekzk�7=3dk; (18)

where the Hankel contour C is taken around the branch cut
defined by the line �1< k< 0, as shown in Fig. 2.
Substituting Eq. (18) into Eq. (17), we find that

A�k� �
�dd�4=3

"�� 4
3�

i

2 sin�4�3 �
k�7=3; (19)

provided the same Hankel contour is used for the integra-
tion. Having determined A�k�, the expression for the ex-
terior potential in Eq. (15) is fully specified.

III. SIMULATION

The prescription of Sec. II can be used to compute the
potential outside a 1D Child-Langmuir flow beam of arbi-
trary elliptic-cylindrical geometry. However, for definite-
ness, we use the above technique to compute the potential
outside a 10:1:8.7 space-charge-limited elliptical diode of
semimajor axis a � 10b, semiminor axis b, and length
d � 8:7b. Equipotentials corresponding to � � 0 and
� � �d are shown in Figs. 3(a) and 3(b), respectively,
for several values of z. The level contours are roughly
elliptical in shape, and the� � �d surface is more steeply
inclined to the beam than the � � 0 surface, as expected
from the 2D theory [18]. The equipotentials in Fig. 3 were
computed by applying a numeric root-finding scheme to
the potential defined in Eq. (15). The Hankel contour
integral is numerically evaluated employing standard tech-
niques for the evaluation of the Mathieu functions [17,27].
It should be noted that these results differ significantly
from those obtained using the method of Nakai [20]. For
example, the z=b � 3:3 equipotential of Fig. 3(a) intersects
the x axis at x=b � 33:2 and the y axis at y=b � 9:2. The
same z=b � 3:3 equipotential, computed using Nakai’s
expression, incorrectly gives an ellipse which intersects
the axes at x=b � 15:7 and y=b � 12:1, respectively.
1-3



FIG. 4. (Color) A 3D OMNITRAK simulation of space-charge-
limited Child-Langmuir flow using the 10:1:8.7 elliptical diode
geometry shown in Fig. 3. Particle trajectories and equipotentials
are shown in (a) the x � 0 plane and (b) the y � 0 plane.
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FIG. 3. Level curves of (a)� � 0 and (b)� � �d surfaces for
a 10:1:8.7 space-charge-limited elliptical diode of semimajor
radius 10b, semiminor radius b, and length 8:7b. The beam fills
the shaded area, which is intersected by the � � 0 surface at
z � 0 and the � � �d surface at z � 8:7b.
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We verify our theory by a cold-beam 3D space-charge-
limited emission simulation using OMNITRAK [21], a com-
mercially available ray-tracing code. Simulation results are
shown in Fig. 4 for the same geometry as in Fig. 3, using a
variable-resolution computational mesh with x spacing of
0.1 mm for 0 � x � 8 mm and 0.5 mm for 8 � x �
15 mm, y spacing of 0.05 mm for 0 � y � 1 mm,
0.1 mm for 1 � y � 5 mm, and 0.4 mm for 5 � y �
12 mm, and z spacing of 0.05 mm for 0 � z � 0:8 mm,
0.02 mm for 0:8 � z � 1:2 mm, 0.05 mm for 1:2 � z �
2 mm, 0.1 mm for 2 � z � 5:7 mm, 0.05 mm for 5:7 �
z � 7 mm, and 0.1 mm for 7 � z � 10 mm. The mesh
resolution is higher in x and y across the cross section of
the beam, and in z where the beam intersects the emitter
and collector. The 3D electrode structure was linearly
interpolated between the equipotentials in Fig. 3, each
sampled at 46 points evenly distributed in �, for 0 � � �
�=2. Nearby computational nodes are shifted to conform
to the electrode surfaces using the OMNITRAK surface flag.
Neumann boundaries were used for the symmetry planes of
the beam as well as for the outer boundaries of the simu-
01420
lation region, which is shown in Fig. 4 along with com-
puted equipotentials and particle trajectories projected to
the x � 0 and y � 0 planes. The entire simulation runs in
approximately 30 min on a 3 GHz personal computer.

The beam produced by the simulation is essentially
parallel, laminar, uniform density Child-Langmuir flow.
Beam laminarity is often characterized by the rms beam
emittances "x � �hx2ihx02i � hxx0i2�1=2 and "y � �hy2i�
hy02i � hyy0i2�1=2, where the averages of transverse particle
position �x; y� and divergence �x0; y0� � �dx=dz; dy=dz� are
taken over a slice of the beam at z � d. For a uniform
density elliptic beam, these emittances can be related to
effective beam temperatures [28] by the relations "x �
a�kTeff;x=8q�d�

1=2 and "y � b�kTeff;y=8q�d�
1=2. If we

use the parameters of our earlier examples, a 10:1:8.7
elliptical electron or ion diode with �d � 5:0 kV, d �
5:2 mm, a � 6:0 mm, and b � 0:6 mm, the cold-beam
OMNITRAK simulation shown in Fig. 4 predicts the effective
beam temperatures Teff;x � 6:7� 10�4 eV and Teff;y �
8:1� 10�3 eV. For a realistic beam, of course, the lower
limit of the effective beam temperature (and emittance)
will be given by the physical temperature of the emitter,
approximately 0.1 eV for a typical thermionic electron or
ion diode. Since the simulated temperatures are negligibly
small compared to this value, we can infer that the emit-
tance of an elliptical diode constructed using the above
prescription will approach the theoretical limits imposed
by finite emitter temperature.
1-4
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For most cases of interest with highly elliptic beams, the
focusing electrode slopes are nearly straight lines, except
for a small region near the beam edge. Thus, in practice,
very usable electrodes for the 10:1:8.7 beam can be de-
signed even when omitting several intermediate equipo-
tentials in the interpolation. For example, for the 10:1:8.7
beam discussed above, we may interpolate directly be-
tween the z=b � 0, z=b � 0:83, and z=b � 8:3 equipoten-
tials of Fig. 3(a) without measurably affecting the
simulated emittance. For a somewhat rounder 6:1:6.6 as-
pect ratio example, we find the emittance increases by
approximately 15% when we omit intermediate equipoten-
tials, which is similar to the results for cylindrical beams.

Our ongoing studies include extending the theory to the
relativistic regime. In addition, engineering considerations
generally require a thermally insulating gap between the
emitter edge and the� � 0 electrode, which will introduce
a perturbation to the beam. Nonetheless, for small gaps, we
do not expect a significant modification of the bulk flow.
Preliminary simulation studies of the effect of collector
hole lensing are encouraging. Although the introduction of
a hole through which the beam is extracted alters the
nearby field lines, the field perturbation is nearly linear.
As a result, the beam divergence is well correlated with
position such that emittance growth is modest (factor of 2
or less), which is still negligible.

IV. CONCLUSION

To summarize, a theory of nonrelativistic, laminar,
elliptic-beam formation was presented. The beam was
shown to have the one-dimensional Child-Langmuir flow
form. An analytic expression for the electrostatic potential
outside the beam was derived. Equipotentials correspond-
ing to electrode surfaces were computed numerically. The
effectiveness of the electric field formed by the electrodes
in focusing and preserving the elliptic, 1D Child-Langmuir
flow beam was verified via 3D ray-tracing simulations.
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The neutralized transport experiment (NTX) at the Heavy Ion Fusion Virtual National Laboratory is
exploring the performance of neutralized final-focus systems for high perveance heavy ion beams. The
final-focus scenario in a heavy ion fusion driver consists of several large aperture quadrupole magnets
followed by a drift section in which the beam space charge is neutralized by a plasma. This beam is
required to hit a millimeter-sized target spot at the end of the drift section. The objective of the NTX
experiments and associated theory and simulations is to study the various physical mechanisms that
determine the final spot size (radius rs) at a given distance (f) from the end of the last quadrupole. In a
fusion driver, f is the standoff distance required to keep the chamber wall and superconducting magnets
properly protected. The NTX final quadrupole focusing system produces a converging beam at the
entrance to the neutralized drift section where it focuses to a small spot. The final spot is determined by the
conditions of the beam entering the quadrupole section, the beam dynamics in the magnetic lattice, and
the plasma neutralization dynamics in the drift section. The main issues are the control of emittance
growth due to high order fields from magnetic multipoles and image fields. In this paper, we will describe
the theoretical and experimental aspects of the beam dynamics in the quadrupole lattice, and how these
physical effects influence the final beam size. In particular, we present theoretical and experimental results
on the dependence of final spot size on geometric aberrations and perveance.

DOI: 10.1103/PhysRevSTAB.8.052801 PACS numbers: 52.58.Hm
I. INTRODUCTION

The topic of final-focus systems for high intensity beams
has been an important subject of analytical [1–4], and
experimental [5] efforts since the beginning of the Heavy
Ion Fusion project in 1976. The first designs were derived
from systems already in use in particle accelerators for
high energy physics where space charge is negligible, and
which incorporated sextupoles and octupoles elements for
the correction of chromatic and geometric aberrations.
Chromatic aberrations affect the focal spot radius due to
deviations from the nominal ion momentum causing a
variation in the focal length produced by the magnet sys-
tem. These aberrations may result from initial transients in
the injector, from residual momentum tilt due to beam
compression, or from the momentum spread, or longitudi-
nal emittance produced along the beam line. Geometric
aberrations are due to nonlinear external fields and also
from deviations from paraxial ray optics.

In a possible scenario of a final-focus system for a heavy
ion fusion (HIF) driver, the beam is transported in the final-
focus section through several strong large aperture mag-
netic quadrupoles, and is then allowed to drift ballistically
through neutralizing plasma in a low-density (millitorr) gas
onto the target. There are nonlinear processes both in the
magnetic section as well as in the neutralized transport
section. To investigate these phenomena, the neutralized
transport experiment (NTX) has begun at LBNL [6]. The
NTX beam line (Fig. 1) consists of 4 large bore quadru-
poles followed by a neutralized drift section. A low emit-
tance K� beam is made to traverse this 4-quad lattice, at
05=8(5)=052801(15) 05280
the exit of which, the beam enters a 1-meter-long drift
section with injected plasma. The beam is diagnosed at the
exit of the 4-quad section as well as the end of the drift
section.

The relevance of NTX to the fusion driver is derived
from the observation that the key scaling parameter is
perveance, defined as

Q �
1

4�"0

2ZeIb
miv

3
i

; (1)

where Ib is the beam current, and Z , mi, and vi are,
respectively, the charge state, mass, and velocity of the
beam ions. The beam dynamics of a low current, low
energy beam, as in NTX, is identical to a high current,
high energy beam in a fusion driver, as long as the per-
veance is the same, and the focusing fields are scaled
appropriately (Sec. II).

In the NTX experiment the injector is designed to gen-
erate a very high-brightness, space-charge-dominated po-
tassium beam where the perveance is varied by means of a
beam aperturing system immediately downstream of the
ion source and upstream of the first quadrupole. By chang-
ing the aperture size, we vary the beam current at a fixed
energy.

A simple theoretical model for neutralized drift provides
us the framework in which to analyze the more detailed
experiments and simulations. For a beam, which is nearly
ballistic, the focal length f is given by

f �
r0
�
; (2)
1-1  2005 The American Physical Society



FIG. 1. (Color) neutralized transport experiment (NTX).
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where r0 is the beam radius and � is the angle of conver-
gence at the entrance of the drift section (i.e., exit of the
quadrupole lattice). The final spot size rs at the focal point
is given by

rs �
"
�
; (3)

where " is the unnormalized emittance of the beam at
target.

The first question, addressed with a combination of
simulations and experiment, is whether we can place the
focal spot at target, more specifically, whether we can
control the beam in the quadrupole lattice to produce any
desired beam size r0 and convergence angle � at the
entrance to the drift section. Beam control is obtained by
changing the magnetic strength of the 4 quadrupoles. We
have varied the quadrupoles to obtain various values of �
(5, 10, 15, and 20 mr) for a given beam energy and current.
The agreement between theory and experiment is excel-
lent. We have also varied individual quadrupole strengths,
and demonstrated that the beam shape changes in a pre-
dictable manner. In addition, the beam energy (and current)
was varied, and again, the beam shape varied in a predict-
able manner. Finally, the perveance was varied, and the
same code/experiment agreement was demonstrated.

The ultimate objective for the fusion application is to
deliver the entire pulse onto the target with the same small
spot. This is a nontrivial task because the beam energy and
current from head to tail is not uniform. The different slices
of the beam may have somewhat different beam envelopes
through the magnetic lattice, leading to different beam size
and convergence angle, and therefore variable focal length
from head to tail. We need to know the sensitivity of the
05280
beam optics to small changes in beam energy. To evaluate
this effect, we measured the beam size as the energy varied.
We observed that energy variations of 1% led to reduction
of current density by 50%. This experimental result is
consistent with theory. We also measured directly the
spot size variation from head to tail and significant changes
were observed. The voltage waveform shows a variation of
�1%, and this energy variation is enough to account for
the head-to-tail variation in spot size. For future work, we
need to study the energy sensitivity for other lattices (e.g.,
6-quad lattice) to see if the energy sensitivity could be
reduced. Also, time-dependent focusing may be used to
correct for the head-to-tail variations.

This paper describes the experiments and associated
theory and simulations to study the various physical
mechanisms in the magnetic lattice that affect the final
spot size (radius rs) at a given distance (f) from the end of
the last quadrupole of the neutralized transport experiment.
The physics of final-focus magnetic lattice, in the context
of neutralized drift, is reviewed in Sec. II, including the
effects of geometric and chromatic aberration on the final
spot size. In Sec. 3, we describe the NTX beam-line layout
and diagnostic suite as well as the numerical particle-in-
cell simulation code WARP3D [7]. The improved measure-
ment techniques are essential for quantitative validation of
code predictions. Section IV presents the measurements of
beam transport through the magnetic lattice and compari-
son with simulations made using the WARP3D code, and
includes the control of convergence angle, energy sensi-
tivity and shift of focus, geometric aberrations and emit-
tance growth, and perveance scaling. Section V describes
several factors that influence the interpretation of the ex-
perimental results, including secondary electron effects,
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energy calibration, measurement of quadrupole field
strength, and efficiency of the diagnostic devices.
Conclusions are presented in Sec. VI.
FIG. 2. (Color) Final-focus lattice for ballistically neutralized
drift.
II. FINAL-FOCUS MAGNETIC LATTICE

The NTX transport section is designed to correspond
closely to a prototypical HIF driver final-focus channel. It
consists of four pulsed quadrupole magnets with short drift
regions, including the drift from the source into the channel
and the drift from the channel to the plasma neutralization
chamber. For a beam with a uniform transverse current
density, the description of the beam transverse size along
the channel is given to first order by the envelope equations
of Kapchinskij and Vladimirskij [8]

d2a

dz2
� Ka�

2Q
a� b

�
"2x
a3
; (4)

d2b

dz2
� �Kb�

2Q
a� b

�
"2y
b3
; (5)

where a and b are the transverse edge dimensions, z is the
dimension along the quadrupole lattice centerline, K is the
quadrupole force given byB0=�B��, B0 is the magnetic field
gradient, and �B�� is the beam rigidity. The space-charge
force is proportional to the perveance Q and the phase-
space pressure is given by the unnormalized emittance "x
and "y. For a given perveance and unnormalized emittance,
the beam envelopes do not change when the magnetic field
is transformed proportional to the rigidity; and for a given
perveance and rigidity, the beam envelopes are self-similar
when the emittance is proportional, and the magnetic field
is inversely proportional to the beam size. For NTX, Q�
0:0006, corresponding to a 25 mA potassium beam at
300 keV. An equal perveance driver beam will correspond
to a 10 kA Xenon beam at 2.5 GeV. It is worth noticing that
during the final-focus transport the beam dynamics is
space-charge dominated, and becomes emittance domi-
nated when the beam approaches the focal plane.

Figure 2 shows the horizontal and vertical beam enve-
lopes through the NTX system, with and without beam
neutralization after the final-focus lattice. The quadrupole
fields are chosen to obtain a beam of one-meter focal
length (20 mm radius, and 20 mr convergence) at the
entrance to the neutralization region.

The heavy ion beam is space-charge dominated in the
final-focus system, where it has a large cross section and is
highly nonparaxial. The beam expands in the two center
magnets, which determines the amount of nonlinear mag-
netic fields that the beam samples as well as the degree of
nonparaxial motion. These geometrical aberrations will
change the focusing properties calculated by the envelope
equations. Therefore, particle tracking simulations require
the knowledge of the multipole field content of the mag-
netic field. It can be shown [1] that to third order the main
05280
contribution to the beam dynamics come from the normal
quadrupole, the normal sextupole and the pseudooctupole
components of the magnetic field. These three components
are included in all the numerical simulations performed for
the design of the lattice.

Neuffer [1] has shown that the geometric aberrations
depend only on the nonperturbed (first order) particle
trajectories; therefore the scaling properties of the geomet-
ric aberrations for a final-focus system depend only on the
perveance Q, if the scaled field reproduces the multipole
components of the original field. He also found a formula
to estimate the correction (increase) of the spot size
[Eq. (3)] due to geometric aberrations:


rs � 1350lquad�
3; (6)

where lquad is the length of the last quadrupole magnet and
� is the convergence angle in radians. For NTX the un-
normalized emittance "� 20 �-mm-mr, the convergence
angle �� 20 mr, and lquad � 0:4 m, from which we get
rs � 1 mm, and 
rs � 4 mm. In Sec. 3 we will show that
experimentally and numerically we get 
rs � 0:5 mm,
about a factor of 10 less increase in spot size due to
geometric aberrations. The discrepancy comes from the
fact that the estimate [Eq. (6)] was obtained by analyzing a
specific lattice configuration (a quadrupole doublet) which
is very different from the NTX lattice.

For fusion applications we require that the final-focus
system will deliver the entire beam pulse onto the target
with the same small spot size. Chromatic aberrations affect
the focal spot radius due to deviations from the nominal ion
momentum causing a variation in the focal length produced
by the magnet system, and can be separated into two types.
The first kind of chromatic aberrations depends on the
velocity and current change from beam head to tail and it
results from initial transients in the injector, from voltage
errors in the accelerating gaps, and from residual momen-
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tum tilt due to beam compression. In this case the different
slices of the beam may have somewhat different beam
envelopes through the magnetic lattice, leading to different
beam size and convergence angle, and therefore variable
focal length from head to tail. The second kind of chro-
matic effects depends on the momentum spread at a given
beam slice (longitudinal emittance) and is produced along
the beam line by thermalization of velocity errors. For a
driver there is a requirement to keep the relative momen-
tum spread �p=p� 0:1%, and remove the velocity tilt by
the time the beam reaches the focal plane.

An estimate of the correction (increase) of the spot size
[Eq. (3)] due to chromatic aberrations from momentum
spread was obtained by Lee [9]:

�rs � 6f�
�
�p
p

�
; (7)

where f is the focal length of the last quadrupole magnet, �
is the convergence angle in radians, and �p=p is the beam
momentum spread. For NTX the focal length f � 1 m, the
convergence angle �� 20 mr, and �p=p� 0:1%, from
which we get 
rs � 0:1 mm. Hence, spot size increase
due to chromatic aberrations from momentum spread is
negligible on NTX. Equation (7) includes the partial can-
cellation of chromatic effects by the space charge of a
uniform density beam. The effects of beam space charge
on the beam dynamics also include nonlinear forces arising
from nonuniform charge density distribution as well as
image forces from the beam pipe. These effects depend
on the length of the lattice and the clearance between the
edge of the beam and the walls of the chamber, and are
negligible for a short system as NTX.

It is possible to infer the effects of momentum spread by
studying the sensitivity of the beam parameters to small
changes in energy for a given beam slice. This can be
FIG. 3. (Color) Schematic
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evaluated by measuring the beam size as the energy is
varied for a given beam slice.
III. EXPERIMENTAL AND NUMERICAL
METHODS

Figure 3 shows a sketch of the NTX beam line, consist-
ing of an ion beam injector, 4 quadrupoles and a meter-
long neutralized drift section with a cathode arc plasma
plug, an rf plasma source, and diagnostics. Optical scintil-
lators imaged by CCD cameras and mechanical slit scan-
ners [6] were used to measure the beam profiles and phase-
space distributions of the beam at the end of the final-focus
lattice.

The K� beam is produced within the source chamber by
a standard hot plate [10] of a 2.54 cm diameter alumino-
silicate source across a diode with a 12 cm gap. The pulsed
power is provided by a Marx generator and crowbar switch
that were used in the multiple beam test experiment (MBE-
4) [11]. This Marx generator produces a pulse with
0:5–1 �s rise time and is crowbared to produce a 6-�s
‘‘flat top.’’ A smooth uniform bright beam profile is gen-
erated by increasing the source temperature, smoothing the
source surface and aperturing the beam [6]. The use of an
aperture to vary the perveance also generates a high-
brightness beam by removing the edge of the beam after
it exits the diode. Beam scraping, however, produces sec-
ondary electrons that are controlled by an electron trap.
Figure 4(a) shows a sketch of the beam scraper system, as
designed using the EGUN code, and 4(b) a photograph of
the aperture and electron trap located at the exit of the NTX
diode. The trap consists of two metal tubes, each of 5 cm
length, and 6.2 cm inner diameter with an aperture plate in
between. The upstream and downstream tubes are located
0.8 cm from the aperture plate. A nominal negative 3 kV
of the NTX beam line.
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FIG. 4. (a) Equipotential plot of the beam scraper system, and
(b) aperture and electron trap system located at the exit of the
NTX diode.
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potential is provided on each of the metal tubes, providing
adequate electron trapping in the presence of the ion beam.
Another electron trap, 7.5 cm in radius, is located at the
downstream end of the beam line, 10.16 cm downstream
from the last quadrupole magnet. A nominal negative 7 KV
voltage is used across this second trap to make it effective
for collection of stray electrons.

The transport section consists of a double FODO chan-
nel with very short drift regions, including the drift from
the source into the channel, and the drift into the plasma
neutralization chamber. Figure 2 shows the calculated
beam envelope (X and Y) through the system. The beam
is quite large in the two center magnets, which determines
the required bore size and winding radius. The magnet has
a relatively short center section and a substantial portion of
the magnetic field is contained in the end fringe fields, with
significant axial components. The beam is transported
through a 2.4 m long path magnetic section, as shown in
Fig. 3, using four pulsed quadrupole magnets, as men-
tioned earlier. The distance from the beam aperture radius
to the center of the first magnet, the quadrupole length, and
the quadrupole to quadrupole spacing are 26, 46.50, and
60 cm, respectively. Field gradient and maximum field of a
magnet are calculated to be 2–5 T=m and 0.6 T, respec-
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tively, with a current range of 3.3 to 8.2 kA. The pulser for
each NTX quadrupole magnet consists of a bipolar-
charged 2 mF capacitor which is discharged through thyr-
istors to produce a current half-sine wave with a pulse
width of 2.3 ms. Bipolar charging and a large capacitance
were chosen to minimize the voltage from the magnet leads
to the grounded magnet housing for the maximum design
current. The pulser output voltage is monitored with a
resistive voltage divider and the magnet current is moni-
tored with a current transformer. Inside the magnetic lat-
tice, a thin wall (3.3 mm) stainless steel tube of 13 cm inner
radius is installed. Eddy currents were calculated by tran-
sient 2D finite element analysis, and it was found to result
in a 7:4% loss of peak field, and a 275 ms peak field time
lag from the source current peak. It was observed that the
measured axial field falloff profile agreed well with the
computational model [12]. Our measurements with and
without stainless steel tube also agree well with the
calculations.

The final section of the beam line is known as the
neutralized drift section, consisting of a cathode arc plasma
plug and an rf plasma source. This section is 1-m long, and
beam diagnostics are installed at the end of the drift section
to measure nonneutralized and neutralized beams.

Several diagnostics have been used to characterize the
ion beam. The primary diagnostics for this experiment
consist of (1) a Faraday cup, (2) a slit /slit-cup system,
and (3) a scintillator with a gated CCD camera system. The
Faraday cup and the slit cup each consists of a collector and
a guard ring (grid) with bias voltages that are controlled to
collect beam ions only. In addition, we can also monitor
currents flowing through the aperture plate and each of the
two electron traps. The removable Faraday cup is inserted
into the NTX beam line at the exit of the injector and at the
end of the magnetic lattice to measure total beam current.
The slit/ slit-cup arrangement is used to measure the line-
integrated beam profile (with slit cup only) and emittance
(with slit and slit cup) at the same locations. The beam
profile is measured optically using a glass or ceramic (96%
alumina) scintillator with associated camera. Charge neu-
tralization of this scintillator is provided by a high-
transparency (80%–90% transmission) metallic mesh
placed on or near the surface of the scintillator. By apply-
ing a negative bias to the mesh, stray external electrons are
decelerated and deflected away from the scintillator, limit-
ing their contribution to the optical image to negligible
levels. Time-resolved beam-induced images on the scintil-
lator screen are captured with a Roper Scientific gated
intensified CCD camera viewing the scintillator through
a vacuum window, and images were processed using the
public domain program IMAGEJ.

We are developing a new technique to measure the 4-
dimensional phase-space distribution of the beam using the
beam imaging diagnostics [6]. The phase-space distribu-
tion f	x; y; x0; y0
 can be measured by scanning the beam
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FIG. 5. (Color) Beam imaging technique to measure the phase-
space distribution f	x; y; x0; y0
.
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with a small pinhole (20 mils in diameter) and letting the
transmitted beamlet travel a long distance (�1 m) before
striking the scintillator where an image is taken. The
position of the pinhole defines the coordinates x and y,
and from the image we can extract the density distribution
of x0 and y0. Because of the fact that the beam at the exit of
the final-focus system is prepared to focus to small spot in
the absence of space charge, a standard pepperpot tech-
nique does not work since all the individual beamlets
would fall on a single spot. Figure 5 shows schematically
FIG. 6. (Color) Dominant (a) quadrupole and (b) pseudo
B?	r; �; z
 � G1	z
r cos	2�
 �G3	z
r

3 cos	2�
 � . . . .
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this technique along with some images of the individual
beamlets that show a very detailed structure of the phase-
space distribution. The knowledge of the 4-dimensional
phase space is essential in order to run more realistic
simulations of the beam focusing to a small spot when
drifting through neutralizing plasma.

The primary simulation tool is WARP3D [7]. The code is
used to simulate the ion beam from source through the 4-
quadrupoles and the neutralized drift section to the target.
Details of the experimental setup are incorporated into the
code including all electric (electrodes) and magnetic fields
(third order nonlinear magnetic fields as calculated by
ANSYS). Figure 6 shows the dominant quadrupole and
pseudooctupole magnetic fields used in WARP3D for the
numerical simulations. In the neutralized drift section, a
simple approximation is applied in which the space-charge
forces are uniformly reduced by a neutralization factor, of
the order of 95% to 97%, which is a result obtained from a
more detailed neutralized beam transport calculation using
LSP code [6]. LSP models the plasma-beam interaction in
detail, while WARP3D is the code of choice for magnetic
lattice beam dynamics. The simplifying approximation
allows us to extrapolate the beam dynamics effects in the
quadrupole section to the final beam spot.
IV. TRANSPORT IN FINAL-FOCUS SYSTEM

A high-brightness, low emittance ion beam is an essen-
tial component of the neutralized transport experiment
(NTX) to obtain the minimal spot size at the focal plane
[Eq. (3)]. An ion beam extracted from a Pierce-type diode
suffers from spherical aberrations as evidenced from
phase-space distortions (high emittance) and from nonuni-
form charge density profiles. Since the source of these
aberrations are the high order field components, the parti-
cles at the edge of the beam are the most affected. One way
to generate high-brightness beams is to remove the edge of
the beam after it is generated in the diode [6]. To study
octupole coefficients for the multipole decomposition
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beam transport through the final-focus system a 300 keV,
50 mA beam extracted from the diode, has been apertured
to a 1 cm, 25 mA beam with a normalized emittance of 0.05
�–mm-mr and a uniform density profile. Figure 7 shows
the good agreement between the measured (left) and cal-
culated (right) beam profiles and phase space.

A. Envelope control

A series of measurements were performed to demon-
strate the control that WARP3D has in predicting the quad-
rupole fields to obtain prescribed beam parameters.

The first case was to produce a round beam with the
nominal parameters of 20 mm radius and 20 mr conver-
gence (one-meter focal length). Figure 8 shows the good
agreement between the measured (top) and calculated
(bottom) beam profiles and phase-space distributions at
the entrance to the neutralization region. The slight dis-
tortion of the beam profile can be traced back to a small
rotation (5 mr) of one of the quadrupoles. The beam is
uniform with a narrow rim due to field aberrations, and the
measured final unnormalized emittance of the beam is
�25 �–mm-mr, small enough to focus the beam to a
spot radius of rs � 1 mm.

We also compared the beam profiles for several quadru-
pole strength configurations as calculated by WARP3D and
as measured. In Fig. 9, for each quadrupole, the corre-
sponding row shows the profiles for a change of �5%, 0%,
FIG. 7. (Color) Slit-integrated density profile and (x; x0) phase spa
aperture diameter). The corresponding EGUN calculations are show
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and �5% from the nominal quadrupole strength. This
comparison shows the good agreement that we have ob-
tained so far, between measurements and simulations.

In order to study the spot size dependence on conver-
gence angle, we have varied the quadrupoles to obtain
various values of the convergence angle � (5, 10, and
20 mr) for a given beam energy and current. The agreement
between theory and experiment is excellent. Finally, the
perveance was varied, and the same code-experiment
agreement was demonstrated.

As a preliminary test of the NTX system, the beam at the
end of the magnetic lattice was injected into a vacuum pipe
without any neutralization. Figure 10 shows the measured
beam profiles at 1 m downstream from the exit of the final-
focus system. The energy varies from 260 to 300 keV, and
the beam profiles are in good agreement with WARP3D

simulations.

B. Energy scan

We have also performed a complete characterization of
the quadrupole lattice by comparing experimental results
with particle simulations when the beam energy (and cur-
rent) was varied. Again, the beam shape varied as predicted
by WARP3D, when a 3% energy shift correction is applied.
Figure 11 shows the good agreement between the calcu-
lated and measured beam size at the exit of the final-focus
system when the beam energy is varied. The numerical
ce of a high-brightness apertured beam (300 kV, 25 mA, 2-cm
n to the right.
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FIG. 8. (Color) Experimental results and simulations of beam profile and phase-space distribution at exit of channel.
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simulations track the beam behavior as the beam expands
by a large factor when the energy changes from �9% to
�9% around the nominal energy.

The sensitivity of the beam optics to small changes in
beam energy was evaluated by measuring the beam size as
FIG. 9. (Color) Numerical results and camera images of beam
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the energy varied for a given beam slice. We observed that
energy variations of 1% led to reduction of current density
by 50%. This experimental result is consistent with nu-
merical simulations. Since on NTX there is an uncompen-
sated beam head-to-tail energy and current variation from
profiles as a function of quadrupole field configuration.
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FIG. 10. (Color) Experimental (top) and theoretical (bottom) NTX beam profiles for a nonneutralized beam 1 m downstream from the
exit of the final-focus system.
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initial transients in the injector, we also measured directly
the spot size variation from head to tail (Fig. 12), where
significant changes were observed. The voltage (energy)
waveform shows a variation of �1%, and this energy
variation is enough to account for the head-to-tail variation
in spot size. For future work, we need to study the energy
sensitivity for other lattices (e.g., 6-quad lattice) to see if
the energy sensitivity could be reduced. Also, time-
dependent focusing may be used to correct for the head-
to-tail variations.

C. Geometric aberrations

The goal of a final-focus experiment is to obtain the
minimal spot radius. Equation (2) suggests that one could
reduce the spot size by increasing the convergence angle,
provided that the emittance is not significantly increased.
In general, as the angle is increased, the beam envelope
goes through larger excursions in the magnetic lattice,
which in turn leads to increase in emittance through higher
FIG. 11. (Color) Calculated (blue plus sign) and measured (red
diamond) beam size at the exit of the final-focus system as the
beam energy is varied. A factor of 3% was subtracted from the
energy used in the calculation.

05280
order (particularly third order) aberrations. The distortion
of phase space due to geometric aberrations has been
studied numerically. In this experiment, we see the same
phase-space distortions, leading to increased spot size with
large angles. Both code and experiment predict minimum
spot radius at �15 mrad (Fig. 13). Equation (6) predicts a
monotonically increasing spot size as the convergence
angle is varied, but in the experiments, however, the results
are complicated by nonoptimal entrance conditions from
the apertured source which is the same for the different
magnet tunes. In fact for the NTX lattice and for fixed
entrance conditions, the emittance growth along the lattice
may be larger for smaller convergence angles.

D. Spot size dependence on perveance

Finally, we consider variations of perveance. In general,
we expect the geometric aberrations to be less significant
for lower perveance beams. This is true if the final-focus
lattice is ‘‘matched’’ to the beam perveance; it is always
possible to design a final-focus system for a lower per-
veance beam that will be less affected by geometric aber-
rations. The NTX lattice was designed for the 25 mA
potassium beam at 300 keV, with perveance Q� 0:0006.
FIG. 12. Spot size variation from head to tail measured at the
focal plane, showing blow up of the beam head and tail.
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FIG. 13. (Color) Spot size as function of convergence angle.
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Figure 14 shows the spot size dependence on perveance
by comparing the beam images at the focal plane for a
264 keV beam that has been apertured to 25 and 6 mA,
respectively, and that are transported through the final-
focus system using the same quadrupole fields. There is a
large reduction in spot size for the lower perveance beam.

It is important to point out that the low emittance
(�25 �–mm-mr unnormalized) of the beam at the entrance
to the neutralized region allows for the beam to be focused
to a small spot size (1–2 mm radius) at the focal plane for
neutralized ballistic transport. Furthermore, Faraday cup
measurements of the beam current at entrance and exit of
the final-focus system have shown negligible beam loss
along the transport channel.

The pinhole diagnostics system described in Sec. 3 can
be used to simulate the effect of full neutralization on a
beam, since each beamlet going through a pinhole only
carries the information about the phase-space distribution
at a given location without being perturbed by the space
charge of the full beam. The superposition of all the pin-
hole images at a given location can be compared with a
FIG. 14. (Color) Spot size d
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beam transport calculation where the space charge is
turned off from the pinhole-scan plane to the focal plane.
Figure 15 shows a comparison between this ‘‘analog ex-
periment’’ and WARP3D simulations; the agreement is ex-
cellent and shows that the emittance is low enough to get a
small spot (~1 mm radius).

While we have very good agreement between theory and
experiment in many aspects, there are several observations,
which are not yet well understood. We have mentioned the
need for an arbitrary energy calibration factor in order to
obtain agreement between theory and code. To refine the
energy calibration in the experiment, we performed a series
of time-of-flight (TOF) experiments, as well as careful
calibration of resistive and capacitive monitors. While
the 3 different ways of energy calibration agree within
the experimental uncertainties, the discrepancy with theory
persists.

In pursuit of the explanation of this discrepancy, we
suspect that stray electrons might play a role. To ascertain
this effect, we incorporated a mesh liner along the pipe.
However, while currents were clearly collected on the
mesh, its net effect on the beam profile was relatively
minor.

Finally, we have observed clear evidence of halo for-
mation, in both configuration space (Fig. 16) and velocity
space (Fig. 17) as evidenced by the rings surrounding the
central image. However, we have not been able to account,
from numerical simulations, for the origin of these halo
particles thus far.
V. ERROR ANALYSIS

In this section, we discuss several factors that may
influence our interpretation of the ion beam data. To quan-
tify these effects, a series of experiments were performed.
These include: (a) stray electron effects on the beam inside
the quadrupole lattice, (b) calibration of beam energy, (c)
measurements of quadrupoles field strength, and (d) effi-
ciency of the diagnostic devices.
ependence on perveance.
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FIG. 15. (Color) Analog (pinhole) simulation and WARP3D calculation of fully neutralized beam focused to a small spot. Image box
size is 4 cm b� 4 cm squares.
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A. Stray electron effects inside the quadrupole
lattice section

As we mentioned in Sec. 3 the NTX magnetic transport
section contains an aperturing system for variable per-
veance, brightness, and beam size. This aperturing tech-
nique is provided with a sandwich-type electron trap to
collect electrons. Ions from the poorly matched beam head
and halo ions in the main pulse of the beam can strike the
outer wall of the beam tube. A single ion impact can
produce thousands of secondary electrons depending on
the energy and angle of incidence, with ions of grazing-
FIG. 16. (Color) Evidence of beam halo formation in configu-
ration space. Image for a 6% off-energy beam, measured at end
of the final-focus system (beam size �2 cm).
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angle incidence producing the largest secondary electron
yields. Only a small fraction of the beam ions striking the
wall are needed to provide a space-charge-limited supply
of electrons from the wall. If the secondary electrons are
not stopped, they are attracted by the beam potential and
can provide some degree of beam neutralization. The
presence of wall electrons was measured using a long
radial metal mesh, which was installed inside the magnetic
drift section. Mesh radial diameter, space of wire and mesh
length were 23.5 cm, 1.27 cm, and 2.28 m, respectively.
FIG. 17. (Color) Evidence of beam halo formation in velocity
space. Image from a pinhole positioned at end of the final-focus
system and at the center of the beam, and measured at the focal
plane.
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FIG. 18. (Color) A cylindrical metal mesh inside the beam pipe
in the magnetic final-focus section.

FIG. 20. (Color) Beam radius as a function of beam energy as
mesh bias is turned on ( 
 2 kV) and off.
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Figure 18 shows the 23.5 cm diameter metal mesh inside
the magnetic transport section, which was biased with a

2 kV potential. Beam profile at the scintillator, located at
the end of the final-focus magnets, and current in the mesh
as a function of the mesh voltage were measured. Figure 19
shows the measured current in the mesh by varying its bias
voltage.

As a negative voltage was applied across the mesh, there
was no significant current measured in the mesh. It shows
that there was no significant number of ions from the beam
halo near the beam pipe wall. When the voltage was
switched to positive, significant current in the mesh was
measured. It shows that wall electrons were collected in the
positive biased mesh. These electrons were generated in
the drift tube wall. But the beam was not significantly
affected by electrons. Figure 20 shows beam radii corre-
FIG. 19. (Color) Mesh current when applying voltage across the
mesh. Different lines correspond to different energies, ranging
from 244 to 320 keV.
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sponding to several beam energies in condition of mesh
bias powered to 
2 kV and without any mesh voltage. By
comparing these 3 cases, we see that the beam radius
changes were not significant. It is inferred that for a large
pipe, the wall electrons spend only a small fraction of their
time within the beam. The electrons were moving at their
greatest velocity while passing through the beam, reducing
their net effect of beam neutralization.

Though a mesh inside the final-focus magnetic section
was not necessarily effective due to the large diameter of
the beam pipe, it provided good evidence that a positively
biased metal mesh can reduce beam neutralization due to
stray electrons. This effect can be very significant in a
small size drift tube, as we have found in the neutralized
drift section with its 3 in. diameter pipe [6].

B. Calibration of energy

The NTX source is powered from a Marx generator as
mentioned in the experimental Sec. 3. This voltage is
measured with a capacitive voltage divider. Calibration
of beam energy is important because of the sensitivity of
beam transport to the beam energy in a quadrupole trans-
port channel as we have shown in Sec. IV. To provide a
cross check of the beam energy measurement, the capaci-
tive system, was compared to time-of-flight measurements
and a resistive voltage divider system.

Charged particle beams are capable of supporting and
transmitting a variety of waves. Longitudinal space-charge
waves are longitudinal oscillations of the beam within the
conducting boundary of a vacuum wall. These waves have
been studied and applied to continuous electron beams in
microwave devices, bunched charged particle beams in
particle accelerators, and space-charge dominated charged
particle beams. The theoretical equilibrium and stability of
these waves have been explored extensively. Here we dis-
cuss a diagnostic technique that utilizes longitudinal space-
-12



FIG. 21. (Color) Typical waveforms of kicker (yellow trace) and
kick (green trace) pulses for time-of-flight measurements. The
oscilloscope vertical scale is arbitrary, the horizontal scale is 2
�s per division. The magenta and blue traces are auxiliary traces
captured in this image.
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charge waves in heavy-ion beams to determine beam en-
ergy by TOF.

The TOF method described here is to longitudinally
perturb a slice of the beam with a fast voltage pulse applied
to a ‘‘kicker’’ near the path of the beam. The kicker may be
any cylindrically symmetric mechanical structure near the
beam that can rapidly generate a localized longitudinal
electric field on the beam. A typical kicker and kick pulses
are shown in Fig. 21. The voltage pulse applied to the
kicker locally perturbs the energy of the beam particles
passing near the structure. The perturbation propagates in
the form of a wave that travels with the beam. In the long
wavelength limit, there is a fast wave traveling toward the
front of the beam pulse and a slow wave traveling toward
the rear. Measuring the arrival time of the resulting space-
FIG. 22. (Color) Space-charge wave
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charge wave at a detector placed a suitable distance down-
stream provides a measure of the beam energy.

The structure utilized as a kicker is a thin aperture which
also limits the beam transversely for the final-focus experi-
ments. The NTX TOF pulse has a rise time of about 4 ns, a
fall time of about 1 �s, and the peak output voltage is
�2:5 kV. The path length between the kicker and register-
ing beam current at a Faraday cup is 2.48 m.

The initial pulse resembles the longitudinal electric field
(spatial derivative of the potential perturbation) at the
kicker. Beam ions are spread apart at the front of the
wave and compressed at the rear. The result is a double
pulse which is very well defined in time. The time refer-
ence for TOF measurements is the point in which the wave
passes through zero. This corresponds to those particles
which were at the location of the aperture at the time that
the pulser voltage is turned on.

The comparison between data and the 1D model is
shown in Fig. 22 for a small current (1 mA). The agreement
between model and data is good. However, for a large
current (25 mA) the discrepancy varies. Figure 23 shows
the relative difference between TOF beam energy (open
squares), resistive divider voltage (diamonds), and capaci-
tive divider voltage readings as a function of NTX Marx
voltage. Both TOF and resistive divider measurements are
shown as a function of capacitive divider voltage. 2% error
bars are assumed for both sets of measurements. A linear fit
to the data points is also shown for each set of measure-
ments. The voltage indicated by the resistive divider lies
between the capacitive divider and the TOF measurements.

C. Field of the 4 quadrupole magnets

The strength of the 4 quadrupole magnets is provided by
4 separate power supplies using a pulser. Waveforms of
each power supply are monitored on an oscilloscope
screen. There is a 
0:5% magnetic field error bar when
measured on wave forms displayed on the oscilloscope.
in NTX for a low-current beam.
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FIG. 23. (Color) The relative difference between TOF beam energy (open squares), resistive divider voltage (diamonds), and
capacitive divider voltage readings (0% line) as a function of NTX Marx voltage. Both TOF and resistive divider measurements
are shown as a function of capacitive divider voltage. 2% error bars are assumed for both sets of measurements. A linear fit to the data
points is also shown for each set of measurements. The voltage indicated by the resistive divider lies between the capacitive divider and
the TOF measurements.
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Moreover, the magnet current monitor is a current trans-
former with an accuracy specification of �1% and �0%.
The existing timing setup assumes that the peak quadru-
pole field occurs at the peak of the monitored magnet
current. In reality, there is attenuation and a time shift
because of the diffusion of the magnetic field through the
3.3 mm pipe wall. This phase shift is approximately
275 �s based on ANSYS 2D transient EM finite element
modeling. Because of this time shift, the timing of the
beam may not be during the peak quadrupole field. By
the same modeling, the peak field is attenuated by approxi-
mately 7% and has been considered in setting the magnet
currents.

D. Efficiency of diagnostic devices

As was mentioned in Sec. 3, the diagnostics that have
been used in this experiment are Faraday cups, slit cups,
and scintillators associated with electronics and a CCD
gated camera. Though slit cups have available an electron
guard ring, there exists the possibility of the generation of
secondary electrons noise by energetic particles, whose
presence can mislead the interpretation of halo particles
studies. Moreover, once energetic particles strike on a
scintillator, its efficiency degrades as a function of incom-
ing beam particle energy.

VI. CONCLUSIONS

The key question of a final-focus experiment is what
determines the spot size. In this paper, the emphasis is on
the role of the final magnetic system. The effects of plasma
neutralization dynamics are discussed elsewhere.

We have shown from both theory and experiment on
how to prepare the beam envelope for final neutralized
052801
drift. We have also studied the effects of beam energy
variations and demonstrated the importance of head-to-
tail energy uniformity. We have studied the higher order
aberrations, and, in particular, the geometric aberrations
and its effect on the spot size. Finally, we have considered
the dependence of spot size on perveance.

Overall, the comparisons between theory and experi-
ment are quite good. We have discussed some possible
factors in the experiment which are not included in
the theory, and an attempt to resolve these issues
experimentally.

In terms of future experimental work, the most impor-
tant task is an in situ measurement of the magnetic field,
including all the eddy current effects of the pipe and
flanges.

One additional unexplained observation has to do with
haloes in both configuration and velocity space. We pre-
sented two examples in Figs. 16 and 17, respectively.
Numerical simulations have not been able to account for
these haloes thus far, and will be the subject of future
studies.

While we still have a couple of puzzles to resolve, we
believe that much has been learned about the final-focus
magnetic system relevant for a HIF driver. The questions of
how to control energy sweep, design constraints on aber-
rations, and perveance, are now much better understood as
a result of this work.
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Abstract 
 A three-dimensional (3D) theory of non-relativistic, 

laminar, space-charge-limited, ellipse-shaped, charged-
particle beam formation has been developed recently [1] 
whereby charged particles (electrons or ions) are 
accelerated across a diode by a static voltage differential 
and focused transversely by  Pierce-type external 
electrodes placed along analytically specified surfaces. 
The treatment is extended to consider whether the diode 
geometry solutions thus obtained are robust to 
perturbations and limitations of the sort likely to be 
encountered in a realistic device: finite extent, part 
misalignment, tolerances for mechanical and thermal 
stresses, etc. Analytic and semi-analytic estimates are 
presented along with simulations utilizing the 3D 
trajectory code, OMNITRAK [2]. It is found that the 
elliptic-beam solution is quite stable and robust, and its 
desirable properties can be maintained in a realistic diode.  

INTRODUCTION 
Electron beams of elongated elliptic cross-sections have 

generated great interest in vacuum electronics, because of 
their low space-charge energy and efficient coupling to rf 
structures when compared to circular beams. It is well-
known that high space-charge reduces conversion 
efficiency in conventional microwave tubes employing 
circular beams. Presently, there are vigorous activities in 
the development of sheet-beam traveling wave amplifiers 
[3,4], klystrons [5], and focusing systems [6,7]. 

In high-intensity ion and electron accelerators, beams 
often exhibit non-laminar flows such as large-amplitude 
density fluctuations, mismatched envelope oscillations, 
emittance growth, chaotic particle orbits, beam 
interception, and difficulty in beam focusing and 
compression. Many of these effects are due to beam 
mismatch or non-equilibrium behavior. Elliptic beams 
may allow simplified and more natural matching [8] 
between beam injectors and commonly used magnetic 
focusing lattices, reducing the emittance growth 
associated with beam mismatch. 

Although elliptic beams present numerous advantages, 
their inherent three-dimensional nature has made diode 
design a challenging process, both analytically and 
numerically. For the applications discussed above, 
desirable beam characteristics include uniform current 
density, parallel flow, and zero magnetic flux threading 

the emitter – properties consistent with one-dimensional 
Child-Langmuir [9] flow, in which the electrostatic 
potential varies as 34z∝Φ , where z  is the beam 
propagation distance. In general, however, such flows are 
difficult to produce. Recent studies of 2D and 3D 
extensions of the Child-Langmuir law in an infinite 
applied magnetic field have shown that the beam exhibits 
significant current density enhancements near the beam-
vacuum boundary. In the absence of an infinite confining 
magnetic field, the beam will tend to spread in phase-
space, resulting in a degradation of beam quality. As 
shown in Ref. [1], it is possible to induce the space-charge 
flow in a 3D system to take the 1D Child-Langmuir flow 
form by calculating a 3D equipotential geometry that is 
consistent with the 1D Child-Langmuir electric field 
within the beam and constructing external electrodes lying 
along the equipotentials as prescribed that focus the beam. 
Such a beam can, in theory, exhibit extremely low 
emittance, laminar flow. 

The equipotential surfaces calculated using the methods 
of Ref. [1], however, are idealizations, and it is an 
important question whether the solutions thus obtained are 
robust to perturbations and limitations of the sort likely to 
be encountered in a realistic device: finite extent, part 
misalignment, tolerances for mechanical and thermal 
stresses, etc. Analytic and semi-analytic estimates are 
presented along with 3D simulations utilizing the 3D 
trajectory code, OMNITRAK [2], and it is found that the 
elliptic-beam solution is quite stable and robust, and its 
desirable properties can be maintained in a realistic diode. 

ELLIPTIC GUN GEOMETRY 
We consider a non-relativistic charged-particle beam of 

length d  and elliptic cross-section with semi-major axis 
a  and semi-minor axis b , as shown in Fig. 1. The 
charged particles are emitted from a flat elliptic plate, held 
at potential 0=Φ , in the 0=z  plane and collected by 
another flat elliptic plate, held at potential dΦ=Φ , in the 

dz =  plane. The cold fluid equations describing the beam 
interior are ,42 qnπ−=Φ∇  ( ) ,0=⋅∇+∂∂ Vntn  and 

( ) ( ) ,Φ∇−=∇⋅+∂∂ mqt VVV  for the region 
12222 ≤+ byax  and dz ≤≤0 . In these equations, V  

is the flow velocity, and n  is the density of particles, each 
of mass m  and charge q . Note that, consistent with the 
non-relativistic approximation, we neglect any self-
magnetic field. In the beam exterior, the potential satisfies 
Laplace’s equation, .02 =Φ∇  

____________________________________________ 
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Figure 1: Elliptic charged-particle beam diode shown in 
the x-z and y-z planes. The beam has semi-major axis a 
and semi-minor axis b, emitted at potential 0=Φ  and 
collected at potential dΦ=Φ  after propagating a 
distance d along zê . 

The 1D steady-state solution to the interior problem 
defined by the cold fluid equations can be obtained by 
using the plate potentials as boundary conditions for 
Poisson’s equation and imposing the constraint that 
particles emerge from the 0=Φ  emitter with zero 
velocity, i.e. the space-charge-limited boundary condition. 
This results in the well-known 1D Child-Langmuir (C-L) 
[12] solution for laminar, space-charge-limited flow with 

( ) ( ) ( ) 32212ˆ dzmqz dz Φ= eV , ( ) ( )( ) 3229 −Φ= dzqdzn d π , 

and ( ) ( ) 34dzz dΦ=Φ . For example, an electron diode of 
length 11.4=d mm and diode voltage 29.2=Φd kV 
produces a current density of 1.51 2cmA . 

A 3D cold-beam space-charge-limited emission 
simulation using the commercially-available ray-tracing 
code OMNITRAK is shown in Fig. 1 for a 6:1 elliptic beam  
using the example parameters 73.3=a mm and 

62.0=b mm. A variable-resolution computational mesh is 
employed with x -spacing of 0.05 mm for 40 ≤≤ x mm 
and 0.05 mm for 104 ≤≤ x mm, y -spacing of 0.05 mm 
for 10 ≤≤ y mm and 0.2 mm for 81 ≤≤ y mm, and z -
spacing of 0.05 mm for 4.00 ≤≤ z mm and 0.1 mm for 

104.0 ≤≤ z mm. The mesh resolution is higher in x  and 
y  across the cross-section of the beam, and in z  where 

the beam leaves the emitter as shown in Fig. 1. Nearby 
computational nodes are shifted to conform to the 
electrode surfaces using the OMNITRAK surface flag. 
Neumann boundaries were used for the symmetry planes 
of the beam as well as for the outer boundaries of the 
mesh, which is shown in Fig. 1 along with computed 
equipotentials and particle trajectories projected to the 

0=x  and 0=y  planes. The entire simulation runs in 
approximately 30 minutes on a 3 GHz personal computer. 

The beam produced by the simulation is essentially 
parallel, laminar, uniform density Child-Langmuir flow. 
Beam laminarity is often characterized by the rms beam 
emittances ( ) 21222 xxxxx ′−′≡ε  and 

( ) 21222 yyyyy ′−′≡ε , where the averages of 

transverse particle position ( )yx,  and divergence 
( ) ( )dzdydzdxyx ,, ≡′′  are taken over a slice of the beam 
at dz = . For a uniform density elliptic beam, these 
emittances can be related to effective beam temperatures 
[10] by the relations ( ) 21

, 8 dxeffx qkTa Φ=ε  and 

( ) 21
, 8 dyeffy qkTb Φ=ε . Using the example parameters of 

Fig. 1, the OMNITRAK simulation shown predicts the 
effective beam temperatures 280, =xeffT K and 

1700, =yeffT K.  

PARAMETRIC ROBUSTNESS 
The effective beam temperatures of the previous section 

are not meaningful in practice beyond their use as a 
measure of the minimum beam temperature growth 
associated with the gun optics.  
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Figure 2: The effective beam temperature effT  is plotted as 
the termination radius of the beam-focusing electrodes is 
varied. The circles indicate xeffT , , while the squares 

indicate yeffT , . 

The theory of Ref. [1] computes equipotentials 
extending infinitely far from the beam. In practice, 
electrodes lying along these equipotentials will have a 
finite length, and it is important to assess the impact of the 
edge effects thus admitted on the beam. Since the 
potential satisfies Laplace’s equation in the free-space 
region outside the beam, we expect that electrostatic 
potential variations caused by localized perturbations of 
the electrode geometry will be exponentially decaying 
with distance from the perturbation point. We test this 
hypothesis by performing several cold-beam OMNITRAK 
simulations where the radial extent of the electrodes is 

Proceedings of 2005 Particle Accelerator Conference, Knoxville, Tennessee

3373 0-7803-8859-3/05/$20.00 c©2005 IEEE



varied, while the Neumann boundaries at the edge of the 
simulation region are kept constant. The effective beam 
temperatures at the anode are shown as a function of 
electrode radius in Fig. 2. We see that the influence of 
electrode structure beyond 6mm in radius is minimal. 
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Figure 3: The effective beam temperature, effT  is plotted 
as the emitter is shifted (a) in the transverse x-y plane and  
(b) in z. The circles indicate xeffT , , while the squares 

indicate yeffT , . In (a), the solid circles and squares 
represent shifts along x, while the open circles and 
squares represent shifts along y. 

While the electrode length study establishes the 
insensitivity of the beam quality to geometry 
perturbations far from the beam, we must allow for 
machining tolerances in the cutting and alignment of parts 
close to the beam as well. Several cold-beam OMNITRAK 
simulations were performed with small shifts in the 
emitter stalk position, and results are shown in Fig. 3. The 
greatest sensitivity is observed with respect to transverse 
misalignments – precise emitter positioning within 0.02 
mm is desirable to minimize beam temperature growth. 

A hot thermionic emitter is often thermally isolated 
from the focus electrode by a vacuum gap. We vary the 
elliptical gap width by a single parameter, gδ , which 
represents the difference between the semi-major/minor 

radii of the inner edge of the focus electrode and the semi-
major/minor radii of the emitter, and show the results in 
Fig. 4. 

As expected, for large values of the gap, the electrodes 
no longer impose the proper boundary conditions on the 
beam edge, and thus emittance growth is seen. We find 
that, a gap thickness greater than 0.05 – 0.1 mm would 
not be desirable.   
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Figure 4: The effective beam temperature, effT  is plotted 

as the vacuum gap thickness gδ  around the emitter is 

varied. The circles indicate xeffT , , while the squares 

indicate yeffT , . 

CONCLUSION 
The sensitivity of the electrode specification theory of 

Ref [1] to physical geometry and machining limitations 
such as finite extent, part misalignment, and tolerances for 
mechanical and thermal stresses is established. The 
greatest sensitivity is seen to transverse misalignments of 
the emitter stalk. 
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Abstract—A three-dimensional theory of nonrelativistic, lam-
inar, space-charge-limited, ellipse-shaped, charged-particle beam
formation has been developed recently. Charged particles (elec-
trons or ions) are accelerated across a diode by a static voltage
differential and focused transversely by Pierce-type external
electrodes placed along analytically specified surfaces. The theory
is presented here along with design examples for a 6:1 elliptic
electron beam diode and a 3:2 heavy ion beam diode. OMNITRAK
simulations are performed to verify the theory and to explore
beam tolerances with respect to perturbations of the diode geom-
etry of the sort likely to be encountered in a realistic device: finite
electrode extent, part misalignment, and allowances for thermal
isolation.

Index Terms—Beam injection, elliptic beams, particle beams,
sheet beams.

I. INTRODUCTION

CHARGED-PARTICLE beams of elongated elliptic cross
sections have long generated great interest in vacuum elec-

tronics [1] because of their low space-charge energy and effi-
cient coupling to radio frequency (RF) structures as compared
to circular beams. It is well known that high space-charge re-
duces conversion efficiency in conventional microwave tubes
employing circular beams. Presently, there are vigorous activi-
ties in the development of sheet-beam sources [2], [3], traveling
wave amplifiers, klystrons [4], and focusing systems [5]–[7].

In high-intensity ion and electron accelerators, beams often
exhibit nonlaminar flows, such as large-amplitude density fluc-
tuations [8], mismatched envelope oscillations [9], emittance
growth, and chaotic particle orbits. Many of these effects, which
are caused by a beam mismatch or nonequilibrium behavior,
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lead to beam interception and make beam focusing and com-
pression more difficult. Elliptic beams may allow simplified and
more natural matching [10] between beam injectors and com-
monly used magnetic focusing lattices, reducing the emittance
growth associated with beam mismatch.

Although elliptic beams present numerous advantages, their
inherent three-dimensional (3-D) nature has made diode design
a challenging process, both analytically and numerically. For
the applications discussed above, desirable beam characteristics
include uniform current density, parallel flow, and zero mag-
netic flux threading the emitter—properties consistent with one-
dimensional (1-D) Child–Langmuir (C–L) [11], [29] flow, in
which the electrostatic potential varies as , where is
the beam propagation distance. In general, however, such flows
are difficult to produce [12]. Recent studies of two-dimensional
(2-D) and 3-D [13]–[17] extensions of the C–L law in an in-
finite applied magnetic field have shown that the beam exhibits
significant current density enhancements near the beam-vacuum
boundary. In the absence of an infinite confining magnetic field,
the beam will tend to spread in phase-space, resulting in a degra-
dation of beam quality. As shown in [18], it is possible to induce
the space-charge flow in a 3-D system to take the 1-D C–L flow
form by calculating a 3-D equipotential geometry that is con-
sistent with the 1-D C–L electric field within the beam and con-
structing external electrodes lying along the prescribed equipo-
tentials that focus the beam. Such a beam can, in theory, exhibit
extremely low emittance, laminar flow.

In order to clarify the treatment of the elliptic beam problem,
we briefly discuss some important space-charge flow results in
Section II. We then present the elliptic diode design method-
ology in Section III, followed by OMNITRAK [19] simulation re-
sults and tolerance studies in Section IV.

II. REVIEW OF SPACE-CHARGE FLOW RESULTS

A. C–L Flow

Consider two infinite, parallel plates located at and
and held at fixed potentials and , respec-

tively. If the plate is a charge emitter and the plate

0093-3813/$20.00 © 2006 IEEE
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a charge absorber, a 1-D, laminar, space-charge-limited flow so-
lution of the nonrelativistic C–L [11], [29] form is established
by applying the nonrelativistic cold fluid equations

(1)

(2)

(3)

where represents the particle mass, the particle charge,
the number density, and the fluid velocity. By requiring a
1-D, steady-state solution, all quantities become functions of

alone. The continuity (1) implies constant current density ,
while the equation of motion (2) yields conservation of energy.
Combining these with Poisson’s (3) yields a differential equa-
tion for the electric potential

(4)

Equation (4) is integrable, yielding potential
, fluid velocity ,

current density , and
number density . While this is
a powerful and simple solution for laminar flow, its infinite
transverse extent makes it unphysical.

B. Pierce Sheet Beam Diode

Pierce [20] noted that, while such an infinitely wide flow is
not realizable, a portion of such a flow is, provided one used
“electrodes outside of the beam shaped so that they would fool
the electrons in the beam into thinking that they were part of
a larger flow.” Mathematically, this is achieved by postu-
lating a beam boundary and specifying boundary conditions
there which are consistent with the C–L [11], [29] solution.
Since the particles in the beam interior are influenced only by
local fields, C–L boundary conditions on the beam edge are suf-
ficient to enforce C–L flow in the beam interior.

For example, the infinite beam solution becomes a semi-infi-
nite one if a beam boundary exists along the plane. Along
this boundary, according to the C–L solution, the electric poten-
tial and its derivative are both specified, giving a set of Cauchy
boundary conditions

(5)

(6)

In the vacuum region outside the beam, the potential satisfies
Laplace’s equation, . While the interior beam problem
is solved by C–L, Pierce’s exterior problem requires solving
Laplace’s equation in the region outside the beam, subject to
the boundary conditions (5) and (6) on the beam edge. Solu-
tions to elliptic-equation Cauchy problems are usually difficult
or impossible to obtain [21], and standard numerical methods
fail due to the exponential growth of errors which is character-

Fig. 1. Beam of elliptic cross section (semimajor axis a, semiminor axis b) is
shown in Cartesian and elliptic cylindrical coordinates. Beam is emitted from
an elliptic plate at � = 0 in the z = 0 plane and collected by an elliptic plate
at � = � in the z = d plane. Beam fills the area enclosed by the surface
� = � . In any z plane, lines of constant � are ellipses, and lines of constant �
are semihyperbolas.

istic of such problems. Pierce [22], however, saw a solution by
inspection, writing

(7)

where and . Equation (7) for the potential
is valid in the region outside the beam, and electrodes
placed along equipotentials of (7) will enforce C–L flow on a
semiinfinite charged particle stream. In particular, by examining
the polar form, we can see that the “Pierce” electrode is a
plane inclined at an angle , with respect to the beam
edge.

A similar operation can be performed to create another beam
boundary (and corresponding set of electrodes) at some

, which results in an infinitely wide sheet beam confined
in the space . This 2-D sheet beam, however, is
unbounded in .

C. Radley Cylindrical Beam Diode

Radley [23] resolved the unboundedness problem by finding
a solution for a circular beam of radius . In cylindrical coordi-
nates , one can express the C–L boundary conditions for
the circular beam as

(8)

(9)

for . Note that is also a boundary condi-
tion, but it is implied by (8).

A simple solution of the Pierce planar form does not hold
in the cylindrical geometry, since the analog between Laplace’s
equation and the Cauchy–Riemann conditions for analytic func-
tions only exists in 2-D Cartesian coordinates. Radley’s method
[23] employs separation of variables and expression of the po-
tential as a complex contour integral of a sum of Bessel func-
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tions chosen to satisfy the boundary conditions at the beam edge.
Rather than review this method in detail, we present the 3-D gen-
eralization to the elliptic geometry in the following section and
note where reductions to Radley’s form can be made.

III. ELLIPTIC DIODE GEOMETRY

We consider a nonrelativistic charged-particle beam of length
and elliptic cross section with semimajor axis and semiminor

axis , as shown in Fig. 1. The charged particles are emitted from
a flat elliptic plate, held at potential , in the plane,
and collected by another flat elliptic plate, held at potential

, in the plane.
It is useful to introduce the elliptic cylindrical co-

ordinate system , i.e., ,
, where is a radial coordinate,

is an angular coordinate, and is the
distance from the center of the ellipse to either of its foci, as
illustrated in Fig. 1. The elliptic beam boundary is specified by
the surface .

The potential in the beam interior follows the C–L form [11],
[29]. To determine the potential distribution in the beam exte-
rior, we solve Laplace’s equation while matching the interior
and exterior electric fields on the elliptic beam boundary. From
the C–L solution, the matching conditions on the elliptic beam
boundary imply [18], for

(10)

(11)

where the condition is implied by (10).
We aim to find exterior equipotential surfaces corresponding

to the emitter and collector potentials and ,
respectively. If electrodes at the given potentials are made to lie
along these surfaces, they will enforce the conditions in (10) and
(11) on the interval .

In these coordinates, Laplace’s equation may be expressed as

(12)

We can write a product solution of the form
and apply separation of variables to (12) to

yield [18]

(13)

(14)

(15)

where and are separation constants. Equation (13) leads
simply to exponential solutions . Equation (14) is
the angular Mathieu equation, but we are only interested in
those angular Mathieu functions which have a periodicity
of and are even about and , since the
boundary conditions of (10) and (11) possess these same
symmetries. Such solutions exist only for discrete eigenvalues
of the separation constant , and we adopt the convention of

Fig. 2. Hankel contour in the complex k plane is taken around the �1 <

k < 0 branch cut.

Morse and Feshbach [24] to denote these angular Mathieu
functions by and the associated normal-
ization constants , where is
a nonnegative integer indexing the eigenvalues , as detailed
in [24]. The corresponding radial solutions,
and are radial Mathieu functions of the
first and second kind, respectively. We note here that, in the
Radley circular beam solution [23], the eigenfunctions are the
exponentials and Bessel functions, since there is no angular
dependence.

Any superposition of product solutions of the separated equa-
tions must satisfy Laplace’s (12), and hence we write [18]

(16)

where the transverse dependence is carried in

(17)

we have chosen , and the
primes denote differentiation with respect to . The integration
contour appearing in (16) is yet to be defined (see Fig. 2).

The expansion in (16) assures that satisfies Laplace’s (12),
and it is readily seen that the particular linear combination
of radial Mathieu functions in (17) satisfies the boundary
condition in (11). Moreover, using the Wronskian for the radial
Mathieu functions and the orthogonality of the angular Mathieu
functions, it can be shown that our definition of assures

, which assures that . Note
that in the Radley circular beam solution [23], a superposition
of the form of (16) is still used, but takes the simple form

(18)

Boundary condition (10) now implies

(19)

To invert this, we make use of the integral representation of
the Gamma function [25] to obtain

(20)

where the Hankel contour is taken around the branch cut de-
fined by the line , as shown in Fig. 2.
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Fig. 3. Level curves (at various values of z) shown for equipotential surfaces
(a) � = 0 and (b) � = � of a 3:2 space-charge-limited elliptical Na diode
with semimajor axis a = 6 cm, semiminor axis b = 4 cm, and diode gap
d = 33:5 cm.

Equations (19) and (20) may be combined to yield

(21)

which completes the specification of the potential in (16) with
the Hankel contour of Fig. 2 used for integration.

Having derived an expression for the electric potential ex-
ternal to the beam (the exterior problem), we can proceed to
compute equipotentials corresponding to and
electrodes. The equipotentials were computed by applying a
numeric root-finding scheme to the potential defined in (16).
The Hankel contour integral is numerically evaluated employing
standard techniques for the evaluation of the Mathieu functions
[21], [26]. In Fig. 3, we depict the level curves of electrodes (a)

and (b) for a 3:2 space-charge-limited ellip-
tical diode with semimajor axis cm, semiminor axis

cm, diode gap cm, diode voltage ,
and current density mA/cm . Such a beam could find
application in ion beam accelerators for high-energy density
physics research.

In Fig. 4, we depict the level curves of electrodes (a)
and (b) for a 6:1 space-charge-limited elliptical electron
diode with semimajor axis mm, semiminor axis

mm, diode gap mm, diode voltage ,
and current density A/cm . Such a beam may have
applications in high-efficiency microwave tubes, however for
high-power or high-frequency applications where greater current
density is desired, further beam compression will be required.

Fig. 4. Level curves (at various values of z) shown for equipotential surfaces
(a) � = 0 and (b) � = � of a 6:1 space-charge-limited elliptical electron
diode with semimajor axis a = 3:73 mm, semiminor axis b = 0:62 mm, and
diode gap d = 4:11 mm.

IV. SIMULATION RESULTS AND TOLERANCE STUDIES

In order to verify the theory, the surfaces computed in
Fig. 4 are used as electrode boundaries in a 3-D cold-beam
space-charge-limited emission simulation using the commer-
cially-available ray-tracing code OMNITRAK [19]. As shown in
Fig. 5, the beam produced by the simulation is essentially a
parallel, laminar, uniform density C–L flow.

Beam laminarity is often characterized by the root mean

square (rms) beam emittances

and , where the averages of
transverse particle position and divergence

are taken over a slice of the beam at .
For a uniform density elliptic beam, these emittances can be
related to effective beam temperatures [27] by the relations

and .
While thermal effects are not included in the simulations, we

point out that in a physical system, the effective beam temper-
ature cannot be reduced below the intrinsic temperature of the
beam emitter—roughly 1500 K. The cold-beam effective tem-
perature is an approximate measure of the beam temperature
growth (beyond intrinsic) associated with nonideal diode op-
tics. In simulations, however, the effective temperature will also
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Fig. 5. Results of an OMNITRAK simulation for a 6:1 elliptic electron beam
diode. Particle trajectories are projected to thex�z and y�z center planes of the
beam. Beam has semimajor axis a = 3:73mm, semiminor axis b = 0:062mm,
diode gap d = 4:11 mm, and diode voltage � = 2290 V.

have a significant component generated by numerical noise. In-
deed, computational memory limitations are a significant ob-
stacle in using 3-D simulations to assess beam quality. Using the
example parameters of Fig. 3, the cold-beam OMNITRAK simu-
lation in Fig. 5 has several million computational nodes and sev-
eral thousand particles, however resolution is still insufficient,
particularly along the beam edge in the shorter direction.
Therefore, the resulting cold-beam effective beam temperatures,

and , should be regarded as
an upper bound on the achievable cold-beam effective temper-
atures for the given diode geometry. As higher resolution sim-
ulations are performed with more particles, we expect the par-
ticle noise and field interpolation errors to be reduced, and the
cold-beam effective temperatures should reduce accordingly.
Once these cold-beam effective temperatures are reduced much
below the intrinsic thermal limit (1500 K), further reduction is
not physically significant.

Note that we choose to use the effective beam temperature
(rather than emittance) as a measure of beam quality in our dis-
cussion because it allows for a uniform comparison with the
intrinsic limit imposed by the hot emitter across a wide range
of beam parameters. The intrinsic (emitter-temperature-limited)
emittance, on the other hand, is a function both of emitter size
and diode voltage, and thus not as useful for comparisons be-
tween simulations of different beams.

Whether a diode can approach the intrinsic limit depends on
its geometric design, as well as its tolerance to perturbations
and limitations of the sort likely to be encountered in a real-
istic device: finite extent, part misalignment, and allowances
for thermal isolation. For example, the theory of [18] com-
putes equipotentials extending infinitely far from the beam. In
practice, electrodes lying along these equipotentials will have
a finite length, and it is important to assess the impact of
the edge effects thus admitted on the beam. Since the poten-
tial satisfies Laplace’s equation in the free-space region out-
side the beam, we expect that electrostatic potential variations
caused by localized perturbations of the electrode geometry

Fig. 6. Cold-beam effective temperature T is plotted as the termination
radius of the beam-focusing electrodes is varied. Circles indicate T , while
the squares indicate T .

will be exponentially decaying with distance from the pertur-
bation point. We test this hypothesis by performing several
cold-beam OMNITRAK simulations for the 6:1 electron diode
example where the radial extent of the electrodes is varied and
the Neumann boundaries at the edge of the simulation region
are kept fixed. The cold-beam effective temperatures at the
anode are shown as a function of electrode radius in Fig. 6.
While the simulation noise in the direction obscures the
result somewhat, we can regard the measured cold-beam ef-
fective temperatures as upper bounds and see from the general
trend that the beam temperatures do not significantly exceed
intrinsic thermal levels unless the focusing electrodes are cur-
tailed below a 6-mm radius.

While the electrode length study establishes the insensitivity
of the beam quality to geometry perturbations far from the
beam, we must allow for machining tolerances in the cut-
ting and alignment of parts close to the beam as well. Sev-
eral cold-beam OMNITRAK simulations were performed with
small shifts in the emitter stalk position, and results are shown
in Fig. 7. Particular sensitivity is observed with respect to
transverse misalignments in Fig. 7(a), however we believe that
this effect is largely a numerical artifact resulting from the
broken symmetry between the computation grid and model
geometry when subject to transverse perturbations. Higher res-
olution simulations are required here to reduce the noise com-
ponent of the effective temperature. Nonetheless, for many
space-charge-dominated beam applications (such as the present
example of a microwave tube beam), an effective beam tem-
perature even several times the intrinsic limit (corresponding
to transverse emitter shifts of 0.02 mm) can still be assured to
yield a high-quality beam.

The effective temperature is much less sensitive to symmetry-
preserving longitudinal emitter shifts in the negative direc-
tion, as seen in Fig. 7(b). The positive shifts lead to a greater
effective temperature, largely because of enhanced edge emis-
sion. A slight depression of the emitter to a position near

mm ensures effective temperatures near the in-
trinsic limit.
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Fig. 7. Cold-beam effective temperature,T is plotted as the emitter is shifted
(a) in the transverse x� y plane and (b) in z. Circles indicate T , while the
squares indicateT . In (a), the solid circles and squares represent shifts along
x, while the open circles and squares represent shifts along y.

Fig. 8. Cold-beam effective temperature, T is plotted as the vacuum gap
thickness � around the emitter is varied. Circles indicate T , while the
squares indicate T .

A hot thermionic emitter is often thermally isolated from the
focus electrode by a vacuum gap. We vary the elliptical gap
width by a single parameter which represents the difference
between the semimajor/minor radii of the inner edge of the focus
electrode and the semimajor/minor radii of the emitter, and show

the results in Fig. 8. As expected, for large values of the gap, the
electrodes no longer impose the proper boundary conditions on
the beam edge, and thus temperature growth is seen. We find
that, a gap thickness greater than 0.05–0.1 mm would not be
desirable.

V. CONCLUSION

A theory of nonrelativistic, laminar, elliptic beam forma-
tion has been developed. The theory provides an analytic pre-
scription for electrode geometries which support high-quality
elliptic beam formation for use in vacuum electron devices
and particle accelerators. 3-D simulations have been performed
which support the theory, however higher-resolution simula-
tions are needed in order to assess its ultra low-emittance
predictions.

The sensitivity of the electrode specification theory to phys-
ical geometry and machining limitations such as finite extent,
part misalignment, and allowances for mechanical and thermal
stresses is studied, and a tolerance range is established for low-
emittance, low effective-temperature beam generation.
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Cold-fluid theory of equilibrium and stability of a high-intensity periodically twisted
ellipse-shaped charged-particle beam
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It is shown that there exists an exact paraxial cold-fluid equilibrium of a high-intensity, space-charge-
dominated charged-particle beam with a periodically twisted elliptic cross section in a nonaxisymmetric
periodic magnetic field. Generalized envelope equations, which determine the beam envelopes, ellipse
orientation, density, and internal flow velocity profiles, are derived. Nonrelativistic and relativistic
examples of such beam equilibria are presented. The equilibrium and stability of such beams are
demonstrated by self-consistent particle-in-cell (PIC) simulations.

DOI: 10.1103/PhysRevSTAB.9.034401 PACS numbers: 41.75.�i, 41.85.Ja, 41.85.Lc, 52.59.Sa
I. INTRODUCTION

High-intensity ribbon (thin sheet) beams are of great
interest for applications in particle accelerators, such as
storage rings and rf and induction linacs, as well as vacuum
electron devices, such as klystrons and traveling-wave
tubes with periodic permanent magnet (PPM) focusing.
They have the following remarkable properties. First,
they can transport large amounts of beam currents at
reduced intrinsic space-charge forces and energies.
Second, they couple efficiently to rectangular rf structures.
The combination of the space-charge reduction and effi-
cient coupling allows efficient rf generation in vacuum
electronic devices, and efficient acceleration in particle
accelerators. Third, elliptic beams provide an additional
adjustable parameter (e.g., the aspect ratio) which may be
useful for better matching a beam into a periodic focusing
channel.

Although ribbon beams have been discussed in the
literature for four decades, the equilibrium of a high-
intensity, space-charge-dominated beam with a large-as-
pect-ratio elliptic cross section has not been discovered
until this paper. Sturrock [1] first suggested the use of a
periodic magnetic focusing consisting of an array of
planar-wiggler magnets for rectilinear beams. Zhang et
al. [2] had some modest success in the experimental dem-
onstration of the transport of a low-intensity (10 A,
500 kV) sheet beam in a planar-wiggler magnetic field,
and observed considerable beam loss. Researchers made
use of the multiple-time-scale analysis and the paraxial
approximations to obtain the smooth-beam approximation
of high-intensity ribbon-beam equilibria [3–6]. In the
smooth-beam approximation, the effects of the planar-
wiggler field [1,2], or the periodic cusp magnetic (PCM)
field [3,4], or the hybrid of PCM and periodic quadrupole
magnet (PQM) fields [5,6], or the offset pole PCM field [6]
are treated as some averaged focusing constants in the
transverse directions. While the smooth-beam approxima-
tion yields simple results, the multiple-time-scale analysis
requires time averaging, losing the detailed information
06=9(3)=034401(6) 03440
about the beam dynamics. As a result, it does not provide
adequate information about how to generate high-intensity
ribbon beams in practice.

A widely used tool for the determination of evolution of
the charged-particle beam systems is based on the rms
beam description. The construction of self-consistent
beam distributions with linear focusing forces is discussed
in Refs. [7,8], such as Kapchinskij-Vladmirskij equilib-
rium [7–10] in an alternating-gradient quadrupole mag-
netic focusing field and the periodically focused rigid-rotor
Vlasov equilibrium [11,12] in a periodic solenoid magnetic
focusing field. For ultrahigh-brightness beams with negli-
gibly small emittance, a cold-fluid theory can be used to
examine the detailed information about the beam dynam-
ics, especially the evolution of the density and flow veloc-
ity profiles [13–15], such as the cold-fluid corkscrewing
equilibrium [13,14] in a linear focusing channel consisting
of solenoidal and quadrupole magnetic focusing fields.

In this paper, we present the cold-fluid equilibrium
theory of an ultrahigh-brightness, space-charge–domi-
nated, large–aspect-ratio beam propagating through a non-
axisymmetric periodic magnetic focusing field. Our beam
distribution satisfies the assumptions for the distribution
functions described generally in Refs. [7,8]. A paraxial
cold-fluid model is employed to derive generalized enve-
lope equations which determine the equilibrium flow prop-
erties of ellipse-shaped beams with negligibly small
emittance. A matched envelope solution is obtained nu-
merically from the generalized envelope equations, and the
results show that the beam edges in both transverse direc-
tions are well confined, and that the angle of the beam
ellipse exhibits a periodic small-amplitude twist. Two-
dimensional (2D) particle-in-cell (PIC) simulations with
our Periodic Focused Beam 2D (PFB2D) code show good
agreement with the predictions of equilibrium theory as
well as beam stability.

The organization of the present paper is as follows. In
Sec. II, the cold-fluid equilibrium theory of a periodically
twisted ellipse-shaped charged-particle beam is presented
1-1 © 2006 The American Physical Society
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and the generalized envelope equations are derived. In
Sec. III, the generalized envelope equations are solved
numerically for several examples of periodically twisted
ellipse-shaped charged-particle beams. In Sec. IV, PIC
simulations are used to verify the theoretical results.
Conclusions are presented in Sec. V.
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FIG. 1. Laboratory and twisted coordinate systems.
II. COLD-FLUID EQUILIBRIUM THEORY

We consider a high-intensity, space-charge–dominated
beam, in which kinetic (emittance) effects are negligibly
small. The beam can be adequately described by cold-fluid
equations. In the paraxial approximation, the steady-state
cold-fluid equations for time-stationary flow (@=@t � 0) in
cgs units are [13,14]

�bc
@
@s
nb �r? � �nbV?� � 0; (1)

r2
?�

s � ��1
b r

2
?A

s
z � �4�qnb; (2)

nb

�
�bc

@
@s
� V? � r?

�
V? �

qnb
�bm

�
�

1

�2
b

r?�
s � �bêz

� Bext
? �

V?
c
� Bext

z �s�êz

�
;

(3)

where s � z, x? � xêx � yêy, r? � @=@x?, q and m are
the particle charge and rest mass, respectively, nb is the
particle density, V? is the transverse flow velocity, �b �
�1� �2

b�
�1=2 is the relativistic mass factor, use has been

made of �z � Vz=c � �b � const, c is the speed of light
in vacuum and the self-electric field Es and self-magnetic
field Bs are determined from the scalar potential �s and
vector potential Aszêz, i.e., Es � �r?�

s and Bs � r? �
Aszêz.

For the beam dimensions small relative to the character-
istic scale of magnetic variations, i.e., �k0xx�

2=6	 1 and
�k0yy�2=6	 1, a three-dimensional (3D) nonaxisymmet-
ric periodic magnetic field can be described to the lowest
order in the transverse dimension as

B ext�x� 
 B0

�
k2

0x

k0
cos�k0s�xêx �

k2
0y

k0
cos�k0s�yêy

� sin�k0s�êz

�
; (4)

where k0 � 2�=S, k2
0x � k

2
0y � k2

0, and S is the axial peri-
odicity length. The 3D magnetic field in Eq. (4) is fully
specified by the three parameters B0, S, and k0x=k0y.

We seek solutions to Eqs. (1)–(3) of the form

nb�x?; s� �
Nb

�a�s�b�s�
�
�

1�
~x2

a2�s�
�

~y2

b2�s�

�
; (5)
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V?�x?; s� � ��x�s�~x� �x�s�~y��bcê~x

� ��y�s�~y� �y�s�~x��bcê~y: (6)
In Eqs. (5) and (6), x? � ~xê~x � ~yê~y is a transverse dis-
placement in the twisted coordinate system illustrated in
Fig. 1; ��s� is the twist angle of the ellipse; ��x� � 1 if
x > 0 and ��x� � 0 if x < 0; and the functions a�s�, b�s�,
�x�s�, �y�s�, �x�s�, �y�s�, and ��s� are to be determined
self-consistently [see Eqs. (8)–(12)].

The self-electric and self-magnetic fields are well known
for an elliptical beam with density distribution specified in
Eq. (5), i.e.,
�s � ��1
b Asz � �

2qNb
a� b

�
~x2

a
�

~y2

b

�
: (7)
Using the expressions in Eqs. (4)–(7), it can be shown
that both the equilibrium continuity equation (1) and force
equation (3) are satisfied if the dynamical variables a�s�,
b�s�,�x�s� 
 a�1da=ds,�y�s� 
 b�1db=ds, �x�s�, �y�s�
and ��s� obey the generalized beam envelope equations
(see appendix)
d2a

ds2�

�b2��2
x�2�x�y��a

2�2
y

a2�b2

�
�������
�z0
p k2

0x�k
2
0y

k0
cos�k0s�sin�2��

�2
�������
�z0
p

�y sin�k0s�
�
a�

2K
a�b

�0; (8)
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d2b
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d�
ds
�
a2�y � b

2�x
a2 � b2 ; (12)

where

�������
�z0
p



qB0

2�b�bmc
2 and K 


2q2Nb
�3
b�

3
bmc

2 :

Equations (8)–(12) have ‘‘time’’ reversal symmetry
under the transformation �s; a; b; a0; b0; �x; �y; �� !
��s; a; b;�a0;�b0;��x;��y; ��. This implies that the
dynamical system described by Eqs. (8)–(12) has the
hypersymmetry plane �a0; b0; �x; �y�.
TABLE I. System parameters

Parameter Nonrelativistic
Application Wireless communication

Frequency (GHz) 1.95
rf Power (kW) 0.2 (cw)
Current (A) 0.11
Voltage (kV) 2.29
S (cm) 1.912
k0x=k0y 1.60
B0 (kG) 0.337
a=b 6.0
a (cm) 0.373
�max (deg) 10.4
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III. EXAMPLES OF PERIODICALLY TWISTED
ELLIPSE-SHAPED CHARGED-PARTICLE BEAMS

A numerical module in the PFB2D code has been devel-
oped to solve the generalized envelope equations (8)–(12).
There are, in total, seven functions a�s�, b�s�, a0�s�, b0�s�,
�x�s�, �x�s�, and ��s� to be determined. The time reversal
symmetry of the dynamical system requires the quantities
�a0; b0; �x; �y� vanish at s � 0 for matched solutions,
therefore, only the three initial values a�0�, b�0�, and
��0� corresponding to a matched solution need to be de-
termined with Newton’s method.

As an example, we consider a relativistic elliptic beam
with Vb � 198:5 keV, current Ib � 85:5 A, aspect ratio
a=b � 5, and nonaxisymmetric periodic permanent mag-
net focusing with B0 � 2:4 kG, S � 2:2 cm, and
k0y=k0x � 1:52 (see Table I, Col. 4). [We propose to use
it in a 10 MW L-Band ribbon-beam klystron for the
International Linear Collider.] For such a system the
matched solution of the generalized envelope equa-
tions (8)–(12) is calculated numerically as shown in
Figs. 2(a)–2(c) (solid curves) with the corresponding pa-
rameters: k0x � 1:57 cm�1, k0y � 2:39 cm�1,

�������
�z0
p

�

0:732 cm�1, and K � 1:13� 10�2. The solution to the
generalized envelope equations (8)–(12), displayed as
solid and dashed curves in Fig. 2, shows that the semiaxes
of the elliptical beam remain roughly constant with small
oscillations, that the orientation of the ellipse twists peri-
odically with an amplitude of 8.8 degrees, and that the
normalized rotation flow velocities �x and �y oscillate
with the magnet periodicity. It is worthwhile pointing out
that the normalized velocities �x, �y, �x, and �y vanish at
s � 0 which makes it a natural matching point for a
parallel-flow beam with negligibly small emittance [16].

These high-intensity twisted elliptic-beam equilibria ex-
ist over a wide region of parameters ranging from the
nonrelativistic to relativistic regimes. In addition to the
relativistic elliptic-beam equilibrium discussed above, we
present a nonrelativistic elliptic-beam equilibrium and a
mildly relativistic elliptic-beam equilibrium in Table I. The
for elliptic-beam examples.

Mildly relativistic Fully relativistic
Missile defense International Linear Collider

2.8 1.3
500 (pulsed) 10 000 (pulsed)

18.5 85.5
45.0 198.5

2.626 2.2
1.44 1.52
1.099 2.40

4.0 5.0
0.585 0.425
11.5 8.8
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nonrelativistic elliptic beam corresponds to a beam design
for a high-efficiency 200 W ribbon-beam amplifier (RBA)
which is being developed at Massachusetts Institute of
Technology (MIT) for communication, whereas the mildly
FIG. 2. Plots of (a) envelopes a�s� and b�s�, (b) twist angle
��s�, and (c) normalized rotational velocities b�s��x�s� and
a�s��y�s� versus the axial distance s for the fully relativistic
twisted ellipse-shaped beam in Table I (column 4). The solid and
dashed curves are the generalized envelope solution, whereas the
dotted curves are from the PFB2D simulation.

03440
relativistic elliptic beam is proposed for a high-power,
high-efficiency RBA for radar applications.
IV. PIC SIMULATIONS

The beam equilibria predicted by the generalized enve-
lope equations are verified by 2D PIC simulations using the
PFB2D code. In the PFB2D simulations, we use the paraxial
field in Eq. (4), typically 5� 105 particles, a square grid
with 400� 400 cells, and a square conducting pipe with a
full width which is 3 times the semimajor axis of the beam.

Shown in Figs. 2(a) and 2(b), the dotted curves are the
envelopes and angle of the beam ellipse obtained from the
PFB2D simulation for the example of a fully relativistic
elliptic beam with Vb � 198:5 keV, current Ib � 85:5 A,
aspect ratio a=b � 5, and nonaxisymmetric periodic per-
manent magnet focusing with B0 � 2:4 kG, S � 2:2 cm,
and k0y=k0x � 1:52. In the simulation, the emittance is set
to be negligibly small in order to demonstrate the cold-fluid
approximation. As shown in Fig. 2, there is excellent
agreement between the theoretical envelope solution (solid
curves) and the self-consistent PIC simulation results (dot-
ted curves).

The PFB2D simulation also shows that the transverse
beam distribution preserves the equilibrium profile as it
propagates. In Fig. 3, 10 000 particles (a sample of the 5�
105 particles in the PFB2D simulation) are plotted in the
�x; y� plane and �x; dy=ds� plane for five snapshots within
one period: s=S � 9:0; 9:25; 9:5; 9:75, and 10.0 for the
same beam shown in Fig. 2. The preservation of the
beam distribution is further demonstrated in Fig. 4, which
displays the evolution of the normalized fourth moments
hx4i=hx2i2 and hy4i=hy2i2 for the same beam shown in
Fig. 2. In Fig. 4, it is evident that the normalized fourth
moments hx4i=hx2i2 and hy4i=hy2i2, which are both equal to
2 for a uniform-density distribution, remain to be 2 within
�1% as the beam propagates for ten periods. The PIC
simulation results suggest that the beam equilibrium is
stable.
V. CONCLUSION

In conclusion, a novel exact paraxial cold-fluid equilib-
rium was found for a high-intensity, space-charge–domi-
nated charged-particle beam with a periodically twisted
elliptic cross section in a nonaxisymmetric periodic mag-
netic field. Generalized envelope equations, which deter-
mine the beam envelopes, ellipse orientation, density, and
internal flow velocity profiles, were derived, and solved
numerically for nonrelativistic and relativistic examples of
such beams. The equilibrium and stability of such beams
were demonstrated by self-consistent particle-in-cell (PIC)
simulations. We anticipate that the equilibrium theory will
provide a valuable tool in the design of high-intensity
elliptic beams in novel vacuum electronic devices, espe-
cially for ribbon-beam klystrons and traveling-wave tubes.
1-4



FIG. 4. Plots of the evolution of normalized fourth moments
hx4i=hx2i2 and hy4i=hy2i2 for the same beam shown in Fig. 2.

FIG. 3. Plots of 10 000 particles (a sample of the 5� 105

particles in the PFB2D simulation) in the �x; y� plane and
�x; dy=ds� plane for five snapshots within one period: s=S �
9:0; 9:25; 9:5; 9:75, and 10.0 for the same beam shown in Fig. 2.
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The ellipse-shaped beam equilibrium may provide some
flexibility in the design and operation of high-intensity
accelerators.
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APPENDIX

Substituting Eqs. (5) and (6) into Eq. (1) and expressing
the result in terms of the tilde coordinates, we obtain
�
�x ��y �

a0

a
�
b0

b

�
�
�
1�

~x2

a2 �
~y2

b2

�

� 2
��
a0

a
��x

�
~x2

a2 �

�
b0

b
��y

�
~y2

b2

�

�
�
b
a
�0 �

a
b
�0 �

b
a
�x �

a
b
�y

�
~x
a

~y
b

�

� 	
�
1�

~x2

a2 �
~y2

b2

�
� 0; (A1)

where the prime denotes @=@s, and the relations ~x0 � ~y�0,
~y0 � �~x�0, @e~x=@s � e~y�

0 and @e~y=@s � �e~x�
0 have

been used. Since Eq. (A1) must be satisfied for all ~x and
~y, the coefficients of the terms proportional to �, ~x2	, ~y2	
and ~x ~y	 must vanish independently. This leads to the
following equations:

�x �
1

a
da
ds
; (A2)

�y �
1

b
db
ds
; (A3)

d�
ds
�
a2�y � b2�y
a2 � b2 : (A4)

The force balance equation (3) represents two equations,
one in the direction e~x and the other in the e~y direction.
Substituting Eqs. (4)–(7) into Eq. (3), the two equations
can be expressed as
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fx~x� gy~y � 0; (A5)

gx~x� fy~y � 0; (A6)

where

fx � �x
2 ��0x � �x�y � ��x � �y��

0 �
2K
�a� b�

� 2
�������
�z0
p

sin�k0s��y

�
�������
�z0
p k2

0x � k
2
0y

k0
sin�2�� cos�k0s�; (A7)

fy � �y
2 ��0y � �x�y � ��x � �y��0 �

2K
�a� b�

� 2
�������
�z0
p

sin�k0s��x

�
�������
�z0
p k2

0x � k
2
0y

k0
sin�2�� cos�k0s�; (A8)

gx � �0y � ��x ��y��
0 � ��x ��y��y

� 2
�������
�z0
p

�
k2

0x

k0
cos2��

k2
0y

k0
sin2�

�
cos�k0s�

� 2
�������
�z0
p

�x sin�k0s�; (A9)

gy � ��
0
x � ��x ��y��

0 � ��x ��y��x

� 2
�������
�z0
p

�
k2

0x

k0
sin2��

k2
0y

k0
cos2�

�
cos�k0s�

� 2
�������
�z0
p

�y sin�k0s�: (A10)

Since Eqs. (A5) and (A6) must be satisfied for all ~x and ~y,
the coefficients of the terms proportional to ~x and ~y must
vanish independently, which lead to

fx � 0; (A11)

fy � 0; (A12)
03440
gx � 0; (A13)

gy � 0: (A14)

After substituting Eqs. (A2) and (A3) into Eqs. (A11)–
(A14), we obtain the generalized envelope equations (A8)–
(A12).
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Cold-fluid theory of equilibrium and stability of a high-intensity periodically twisted
ellipse-shaped charged-particle beam

Jing Zhou, Ronak Bhatt, and Chiping Chen
Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
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1098-4402=
It is shown that there exists an exact paraxial cold-fluid equilibrium of a high-intensity, space-charge-
dominated charged-particle beam with a periodically twisted elliptic cross section in a nonaxisymmetric
periodic magnetic field. Generalized envelope equations, which determine the beam envelopes, ellipse
orientation, density, and internal flow velocity profiles, are derived. Nonrelativistic and relativistic
examples of such beam equilibria are presented. The equilibrium and stability of such beams are
demonstrated by self-consistent particle-in-cell (PIC) simulations.

DOI: 10.1103/PhysRevSTAB.9.034401 PACS numbers: 41.75.�i, 41.85.Ja, 41.85.Lc, 52.59.Sa
I. INTRODUCTION

High-intensity ribbon (thin sheet) beams are of great
interest for applications in particle accelerators, such as
storage rings and rf and induction linacs, as well as vacuum
electron devices, such as klystrons and traveling-wave
tubes with periodic permanent magnet (PPM) focusing.
They have the following remarkable properties. First,
they can transport large amounts of beam currents at
reduced intrinsic space-charge forces and energies.
Second, they couple efficiently to rectangular rf structures.
The combination of the space-charge reduction and effi-
cient coupling allows efficient rf generation in vacuum
electronic devices, and efficient acceleration in particle
accelerators. Third, elliptic beams provide an additional
adjustable parameter (e.g., the aspect ratio) which may be
useful for better matching a beam into a periodic focusing
channel.

Although ribbon beams have been discussed in the
literature for four decades, the equilibrium of a high-
intensity, space-charge-dominated beam with a large-as-
pect-ratio elliptic cross section has not been discovered
until this paper. Sturrock [1] first suggested the use of a
periodic magnetic focusing consisting of an array of
planar-wiggler magnets for rectilinear beams. Zhang et
al. [2] had some modest success in the experimental dem-
onstration of the transport of a low-intensity (10 A,
500 kV) sheet beam in a planar-wiggler magnetic field,
and observed considerable beam loss. Researchers made
use of the multiple-time-scale analysis and the paraxial
approximations to obtain the smooth-beam approximation
of high-intensity ribbon-beam equilibria [3–6]. In the
smooth-beam approximation, the effects of the planar-
wiggler field [1,2], or the periodic cusp magnetic (PCM)
field [3,4], or the hybrid of PCM and periodic quadrupole
magnet (PQM) fields [5,6], or the offset pole PCM field [6]
are treated as some averaged focusing constants in the
transverse directions. While the smooth-beam approxima-
tion yields simple results, the multiple-time-scale analysis
requires time averaging, losing the detailed information
06=9(3)=034401(6) 03440
about the beam dynamics. As a result, it does not provide
adequate information about how to generate high-intensity
ribbon beams in practice.

A widely used tool for the determination of evolution of
the charged-particle beam systems is based on the rms
beam description. The construction of self-consistent
beam distributions with linear focusing forces is discussed
in Refs. [7,8], such as Kapchinskij-Vladmirskij equilib-
rium [7–10] in an alternating-gradient quadrupole mag-
netic focusing field and the periodically focused rigid-rotor
Vlasov equilibrium [11,12] in a periodic solenoid magnetic
focusing field. For ultrahigh-brightness beams with negli-
gibly small emittance, a cold-fluid theory can be used to
examine the detailed information about the beam dynam-
ics, especially the evolution of the density and flow veloc-
ity profiles [13–15], such as the cold-fluid corkscrewing
equilibrium [13,14] in a linear focusing channel consisting
of solenoidal and quadrupole magnetic focusing fields.

In this paper, we present the cold-fluid equilibrium
theory of an ultrahigh-brightness, space-charge–domi-
nated, large–aspect-ratio beam propagating through a non-
axisymmetric periodic magnetic focusing field. Our beam
distribution satisfies the assumptions for the distribution
functions described generally in Refs. [7,8]. A paraxial
cold-fluid model is employed to derive generalized enve-
lope equations which determine the equilibrium flow prop-
erties of ellipse-shaped beams with negligibly small
emittance. A matched envelope solution is obtained nu-
merically from the generalized envelope equations, and the
results show that the beam edges in both transverse direc-
tions are well confined, and that the angle of the beam
ellipse exhibits a periodic small-amplitude twist. Two-
dimensional (2D) particle-in-cell (PIC) simulations with
our Periodic Focused Beam 2D (PFB2D) code show good
agreement with the predictions of equilibrium theory as
well as beam stability.

The organization of the present paper is as follows. In
Sec. II, the cold-fluid equilibrium theory of a periodically
twisted ellipse-shaped charged-particle beam is presented
1-1 © 2006 The American Physical Society
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and the generalized envelope equations are derived. In
Sec. III, the generalized envelope equations are solved
numerically for several examples of periodically twisted
ellipse-shaped charged-particle beams. In Sec. IV, PIC
simulations are used to verify the theoretical results.
Conclusions are presented in Sec. V.
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FIG. 1. Laboratory and twisted coordinate systems.
II. COLD-FLUID EQUILIBRIUM THEORY

We consider a high-intensity, space-charge–dominated
beam, in which kinetic (emittance) effects are negligibly
small. The beam can be adequately described by cold-fluid
equations. In the paraxial approximation, the steady-state
cold-fluid equations for time-stationary flow (@=@t � 0) in
cgs units are [13,14]

�bc
@
@s
nb �r? � �nbV?� � 0; (1)

r2
?�

s � ��1
b r

2
?A

s
z � �4�qnb; (2)

nb

�
�bc

@
@s
� V? � r?

�
V? �

qnb
�bm

�
�

1

�2
b

r?�
s � �bêz

� Bext
? �

V?
c
� Bext

z �s�êz

�
;

(3)

where s � z, x? � xêx � yêy, r? � @=@x?, q and m are
the particle charge and rest mass, respectively, nb is the
particle density, V? is the transverse flow velocity, �b �
�1� �2

b�
�1=2 is the relativistic mass factor, use has been

made of �z � Vz=c � �b � const, c is the speed of light
in vacuum and the self-electric field Es and self-magnetic
field Bs are determined from the scalar potential �s and
vector potential Aszêz, i.e., Es � �r?�

s and Bs � r? �
Aszêz.

For the beam dimensions small relative to the character-
istic scale of magnetic variations, i.e., �k0xx�

2=6	 1 and
�k0yy�2=6	 1, a three-dimensional (3D) nonaxisymmet-
ric periodic magnetic field can be described to the lowest
order in the transverse dimension as

B ext�x� 
 B0

�
k2

0x

k0
cos�k0s�xêx �

k2
0y

k0
cos�k0s�yêy

� sin�k0s�êz

�
; (4)

where k0 � 2�=S, k2
0x � k

2
0y � k2

0, and S is the axial peri-
odicity length. The 3D magnetic field in Eq. (4) is fully
specified by the three parameters B0, S, and k0x=k0y.

We seek solutions to Eqs. (1)–(3) of the form

nb�x?; s� �
Nb

�a�s�b�s�
�
�

1�
~x2

a2�s�
�

~y2

b2�s�

�
; (5)
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V?�x?; s� � ��x�s�~x� �x�s�~y��bcê~x

� ��y�s�~y� �y�s�~x��bcê~y: (6)
In Eqs. (5) and (6), x? � ~xê~x � ~yê~y is a transverse dis-
placement in the twisted coordinate system illustrated in
Fig. 1; ��s� is the twist angle of the ellipse; ��x� � 1 if
x > 0 and ��x� � 0 if x < 0; and the functions a�s�, b�s�,
�x�s�, �y�s�, �x�s�, �y�s�, and ��s� are to be determined
self-consistently [see Eqs. (8)–(12)].

The self-electric and self-magnetic fields are well known
for an elliptical beam with density distribution specified in
Eq. (5), i.e.,
�s � ��1
b Asz � �

2qNb
a� b

�
~x2

a
�

~y2

b

�
: (7)
Using the expressions in Eqs. (4)–(7), it can be shown
that both the equilibrium continuity equation (1) and force
equation (3) are satisfied if the dynamical variables a�s�,
b�s�,�x�s� 
 a�1da=ds,�y�s� 
 b�1db=ds, �x�s�, �y�s�
and ��s� obey the generalized beam envelope equations
(see appendix)
d2a

ds2�

�b2��2
x�2�x�y��a

2�2
y

a2�b2

�
�������
�z0
p k2

0x�k
2
0y

k0
cos�k0s�sin�2��

�2
�������
�z0
p

�y sin�k0s�
�
a�

2K
a�b

�0; (8)
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d2b

ds2 �

�a2��2
y � 2�x�y� � b2�2

x

a2 � b2

�
�������
�z0
p k2

0x � k
2
0y
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cos�k0s� sin�2��

� 2
�������
�z0
p

�x sin�k0s�
�
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2K
a� b

� 0; (9)
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ds
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ds
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b
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� 2
�������
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db
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sin�k0s� � 0; (11)

d�
ds
�
a2�y � b

2�x
a2 � b2 ; (12)

where

�������
�z0
p



qB0

2�b�bmc
2 and K 


2q2Nb
�3
b�

3
bmc

2 :

Equations (8)–(12) have ‘‘time’’ reversal symmetry
under the transformation �s; a; b; a0; b0; �x; �y; �� !
��s; a; b;�a0;�b0;��x;��y; ��. This implies that the
dynamical system described by Eqs. (8)–(12) has the
hypersymmetry plane �a0; b0; �x; �y�.
TABLE I. System parameters

Parameter Nonrelativistic
Application Wireless communication

Frequency (GHz) 1.95
rf Power (kW) 0.2 (cw)
Current (A) 0.11
Voltage (kV) 2.29
S (cm) 1.912
k0x=k0y 1.60
B0 (kG) 0.337
a=b 6.0
a (cm) 0.373
�max (deg) 10.4
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III. EXAMPLES OF PERIODICALLY TWISTED
ELLIPSE-SHAPED CHARGED-PARTICLE BEAMS

A numerical module in the PFB2D code has been devel-
oped to solve the generalized envelope equations (8)–(12).
There are, in total, seven functions a�s�, b�s�, a0�s�, b0�s�,
�x�s�, �x�s�, and ��s� to be determined. The time reversal
symmetry of the dynamical system requires the quantities
�a0; b0; �x; �y� vanish at s � 0 for matched solutions,
therefore, only the three initial values a�0�, b�0�, and
��0� corresponding to a matched solution need to be de-
termined with Newton’s method.

As an example, we consider a relativistic elliptic beam
with Vb � 198:5 keV, current Ib � 85:5 A, aspect ratio
a=b � 5, and nonaxisymmetric periodic permanent mag-
net focusing with B0 � 2:4 kG, S � 2:2 cm, and
k0y=k0x � 1:52 (see Table I, Col. 4). [We propose to use
it in a 10 MW L-Band ribbon-beam klystron for the
International Linear Collider.] For such a system the
matched solution of the generalized envelope equa-
tions (8)–(12) is calculated numerically as shown in
Figs. 2(a)–2(c) (solid curves) with the corresponding pa-
rameters: k0x � 1:57 cm�1, k0y � 2:39 cm�1,

�������
�z0
p

�

0:732 cm�1, and K � 1:13� 10�2. The solution to the
generalized envelope equations (8)–(12), displayed as
solid and dashed curves in Fig. 2, shows that the semiaxes
of the elliptical beam remain roughly constant with small
oscillations, that the orientation of the ellipse twists peri-
odically with an amplitude of 8.8 degrees, and that the
normalized rotation flow velocities �x and �y oscillate
with the magnet periodicity. It is worthwhile pointing out
that the normalized velocities �x, �y, �x, and �y vanish at
s � 0 which makes it a natural matching point for a
parallel-flow beam with negligibly small emittance [16].

These high-intensity twisted elliptic-beam equilibria ex-
ist over a wide region of parameters ranging from the
nonrelativistic to relativistic regimes. In addition to the
relativistic elliptic-beam equilibrium discussed above, we
present a nonrelativistic elliptic-beam equilibrium and a
mildly relativistic elliptic-beam equilibrium in Table I. The
for elliptic-beam examples.

Mildly relativistic Fully relativistic
Missile defense International Linear Collider

2.8 1.3
500 (pulsed) 10 000 (pulsed)

18.5 85.5
45.0 198.5

2.626 2.2
1.44 1.52
1.099 2.40

4.0 5.0
0.585 0.425
11.5 8.8
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nonrelativistic elliptic beam corresponds to a beam design
for a high-efficiency 200 W ribbon-beam amplifier (RBA)
which is being developed at Massachusetts Institute of
Technology (MIT) for communication, whereas the mildly
FIG. 2. Plots of (a) envelopes a�s� and b�s�, (b) twist angle
��s�, and (c) normalized rotational velocities b�s��x�s� and
a�s��y�s� versus the axial distance s for the fully relativistic
twisted ellipse-shaped beam in Table I (column 4). The solid and
dashed curves are the generalized envelope solution, whereas the
dotted curves are from the PFB2D simulation.

03440
relativistic elliptic beam is proposed for a high-power,
high-efficiency RBA for radar applications.
IV. PIC SIMULATIONS

The beam equilibria predicted by the generalized enve-
lope equations are verified by 2D PIC simulations using the
PFB2D code. In the PFB2D simulations, we use the paraxial
field in Eq. (4), typically 5� 105 particles, a square grid
with 400� 400 cells, and a square conducting pipe with a
full width which is 3 times the semimajor axis of the beam.

Shown in Figs. 2(a) and 2(b), the dotted curves are the
envelopes and angle of the beam ellipse obtained from the
PFB2D simulation for the example of a fully relativistic
elliptic beam with Vb � 198:5 keV, current Ib � 85:5 A,
aspect ratio a=b � 5, and nonaxisymmetric periodic per-
manent magnet focusing with B0 � 2:4 kG, S � 2:2 cm,
and k0y=k0x � 1:52. In the simulation, the emittance is set
to be negligibly small in order to demonstrate the cold-fluid
approximation. As shown in Fig. 2, there is excellent
agreement between the theoretical envelope solution (solid
curves) and the self-consistent PIC simulation results (dot-
ted curves).

The PFB2D simulation also shows that the transverse
beam distribution preserves the equilibrium profile as it
propagates. In Fig. 3, 10 000 particles (a sample of the 5�
105 particles in the PFB2D simulation) are plotted in the
�x; y� plane and �x; dy=ds� plane for five snapshots within
one period: s=S � 9:0; 9:25; 9:5; 9:75, and 10.0 for the
same beam shown in Fig. 2. The preservation of the
beam distribution is further demonstrated in Fig. 4, which
displays the evolution of the normalized fourth moments
hx4i=hx2i2 and hy4i=hy2i2 for the same beam shown in
Fig. 2. In Fig. 4, it is evident that the normalized fourth
moments hx4i=hx2i2 and hy4i=hy2i2, which are both equal to
2 for a uniform-density distribution, remain to be 2 within
�1% as the beam propagates for ten periods. The PIC
simulation results suggest that the beam equilibrium is
stable.
V. CONCLUSION

In conclusion, a novel exact paraxial cold-fluid equilib-
rium was found for a high-intensity, space-charge–domi-
nated charged-particle beam with a periodically twisted
elliptic cross section in a nonaxisymmetric periodic mag-
netic field. Generalized envelope equations, which deter-
mine the beam envelopes, ellipse orientation, density, and
internal flow velocity profiles, were derived, and solved
numerically for nonrelativistic and relativistic examples of
such beams. The equilibrium and stability of such beams
were demonstrated by self-consistent particle-in-cell (PIC)
simulations. We anticipate that the equilibrium theory will
provide a valuable tool in the design of high-intensity
elliptic beams in novel vacuum electronic devices, espe-
cially for ribbon-beam klystrons and traveling-wave tubes.
1-4



FIG. 4. Plots of the evolution of normalized fourth moments
hx4i=hx2i2 and hy4i=hy2i2 for the same beam shown in Fig. 2.

FIG. 3. Plots of 10 000 particles (a sample of the 5� 105

particles in the PFB2D simulation) in the �x; y� plane and
�x; dy=ds� plane for five snapshots within one period: s=S �
9:0; 9:25; 9:5; 9:75, and 10.0 for the same beam shown in Fig. 2.
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The ellipse-shaped beam equilibrium may provide some
flexibility in the design and operation of high-intensity
accelerators.
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APPENDIX

Substituting Eqs. (5) and (6) into Eq. (1) and expressing
the result in terms of the tilde coordinates, we obtain
�
�x ��y �

a0

a
�
b0

b

�
�
�
1�

~x2

a2 �
~y2

b2

�

� 2
��
a0

a
��x

�
~x2

a2 �

�
b0

b
��y

�
~y2

b2

�

�
�
b
a
�0 �

a
b
�0 �

b
a
�x �

a
b
�y

�
~x
a

~y
b

�

� 	
�
1�

~x2

a2 �
~y2

b2

�
� 0; (A1)

where the prime denotes @=@s, and the relations ~x0 � ~y�0,
~y0 � �~x�0, @e~x=@s � e~y�

0 and @e~y=@s � �e~x�
0 have

been used. Since Eq. (A1) must be satisfied for all ~x and
~y, the coefficients of the terms proportional to �, ~x2	, ~y2	
and ~x ~y	 must vanish independently. This leads to the
following equations:

�x �
1

a
da
ds
; (A2)

�y �
1

b
db
ds
; (A3)

d�
ds
�
a2�y � b2�y
a2 � b2 : (A4)

The force balance equation (3) represents two equations,
one in the direction e~x and the other in the e~y direction.
Substituting Eqs. (4)–(7) into Eq. (3), the two equations
can be expressed as
1-5



JING ZHOU, RONAK BHATT, AND CHIPING CHEN Phys. Rev. ST Accel. Beams 9, 034401 (2006)
fx~x� gy~y � 0; (A5)

gx~x� fy~y � 0; (A6)

where

fx � �x
2 ��0x � �x�y � ��x � �y��

0 �
2K
�a� b�

� 2
�������
�z0
p

sin�k0s��y

�
�������
�z0
p k2

0x � k
2
0y

k0
sin�2�� cos�k0s�; (A7)

fy � �y
2 ��0y � �x�y � ��x � �y��0 �

2K
�a� b�

� 2
�������
�z0
p

sin�k0s��x

�
�������
�z0
p k2

0x � k
2
0y

k0
sin�2�� cos�k0s�; (A8)

gx � �0y � ��x ��y��
0 � ��x ��y��y

� 2
�������
�z0
p

�
k2

0x

k0
cos2��

k2
0y

k0
sin2�

�
cos�k0s�

� 2
�������
�z0
p

�x sin�k0s�; (A9)

gy � ��
0
x � ��x ��y��

0 � ��x ��y��x

� 2
�������
�z0
p

�
k2

0x

k0
sin2��

k2
0y

k0
cos2�

�
cos�k0s�

� 2
�������
�z0
p

�y sin�k0s�: (A10)

Since Eqs. (A5) and (A6) must be satisfied for all ~x and ~y,
the coefficients of the terms proportional to ~x and ~y must
vanish independently, which lead to

fx � 0; (A11)

fy � 0; (A12)
03440
gx � 0; (A13)

gy � 0: (A14)

After substituting Eqs. (A2) and (A3) into Eqs. (A11)–
(A14), we obtain the generalized envelope equations (A8)–
(A12).
1-6
[1] P. A. Sturrock, J. Electron. Control 7, 162 (1959).
[2] Z. X. Zhang, V. L. Granatstein, W. W. Destler et al., IEEE

Trans. Plasma Sci. 21, 760 (1993).
[3] J. H. Booske, B. D. McVey, and T. M. Antonsen, Jr., J.

Appl. Phys. 73, 4140 (1993).
[4] J. H. Booske, A. H. Kumbasar, and M. A. Basten, Phys.

Rev. Lett. 71, 3979 (1993).
[5] J. H. Booske and M. A. Basten, IEEE Trans. Plasma Sci.

27, 134 (1999).
[6] M. A. Basten and J. H. Booske, J. Appl. Phys. 85, 6313

(1999).
[7] F. J. Sacherer, Ph.D. thesis, Lawrence Radiation

Laboratory, University of California, Berkeley, 1968,
pp. 15–19.

[8] V. Danilov, S. Cousineau, S. Henderson, and J. Holmes,
Phys. Rev. ST Accel. Beams 6, 094202 (2003).

[9] I. M. Kapchinskij, and V. V. Vladimirskij, in Proceedings
of the International Conference on High Energy
Accelerators (CERN, Geneva, 1959), p. 274.

[10] R. C. Davidson, Physics of Nonneutral Plasma (Addison-
Wesley, Reading, MA, 1990), p. 694.

[11] C. Chen, R. Pakter, and R. C. Davidson, Phys. Rev. Lett.
79, 225 (1997).

[12] R. C. Davidson and H. Qin, Physics of Intense Charged
Particle Beams in High Energy Accelerators (World
Scientific, Singapore, 2001), p. 242.

[13] R. Pakter and C. Chen, Phys. Rev. E 62, 2789 (2000).
[14] C. Chen and R. Pakter, Phys. Plasmas 7, 2203 (2000).
[15] R. C. Davidson, P. Stoltz, and C. Chen, Phys. Plasmas 4,

3710 (1997).
[16] R. Bhatt and C. Chen, Phys. Rev. ST Accel. Beams 8,

014201 (2005).



Generation, Transport and Focusing of
High-Brightness Heavy Ion Beams

by

Enrique Henestroza
Submitted to the Department of Physics

in partial ful�llment of the requirements for the degree of

Doctor of Philosophy in Physics

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2006
c© Massachusetts Institute of Technology 2006. All rights reserved.

Author . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Department of Physics

May 24, 2006

Certi�ed by. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Richard J. Temkin

Senior Scientist
Thesis Supervisor

Certi�ed by. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Chiping Chen

Principal Research Scientist
Thesis Supervisor

Accepted by . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Thomas J. Greytak

Professor & Associate Department Head for Education



2



Generation, Transport and Focusing of High-Brightness

Heavy Ion Beams

by

Enrique Henestroza

Submitted to the Department of Physics
on May 24, 2006, in partial ful�llment of the

requirements for the degree of
Doctor of Philosophy in Physics

Abstract
The Neutralized Transport Experiment (NTX) has been built at the Heavy Ion Fu-
sion Virtual National Laboratory. NTX is the �rst successful integrated beam system
experiment that explores various physical phenomena, and determines the �nal spot
size of a high intensity ion beam on a scaled version of a Heavy Ion Fusion driver. The
�nal spot size is determined by the conditions of the beam produced in the injector,
the beam dynamics in the focusing lattice, and the plasma neutralization dynamics
in the �nal transport. A high brightness ion source using an aperturing technique
delivers 25 mA of single charged potassium ion beam at 300 keV and a normalized
edge emittance of 0.05 π-mm-mr. The ion beam is injected into a large bore mag-
netic quadrupole lattice, which produces a 20 mm radius beam converging at 20 mr.
The converging ion beam is further injected into a plasma neutralization drift section
where it is compressed ballistically down to a 1 mm spot size. NTX provides the �rst
experimental proof of plasma neutralized ballistic transport of a space-charge domi-
nated ion beam, the information about higher order aberration e�ects on the spot size,
the validation of numerical tools based on excellent agreement between measurements
and numerical simulations over a broad parameter regime, and the development of
new diagnostics to study the ion beam dynamics. The theoretical and experimental
results are presented on the beam dynamics in the ion diode, downstream quadrupole
lattice, and �nal neutralized transport.
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Chapter 1

Introduction

1.1 Highly Compressed Ion Beams and their Appli-

cations

High brightness heavy ion beams are required in several applications in which a
large amount of power is delivered in a small volume. The two applications which
motivate the present work are Heavy Ion Fusion (HIF) and High Energy Density
Physics (HEDP). The Heavy Ion Fusion Program has been working for three decades
(starting in 1976) to design a HIF driver that will accelerate heavy ion beams and
focus them to a small spot to implode a DT target by inertial con�nement. A possible
scenario would be to accelerate 120 ion beams to an energy of 4 GeV and a total
current of 10 kA, compress them to short pulses of 8 ns, and focus each beam to
a spot size of 2 mm, achieving a peak deposition of 1012J/m3 (Figure 1-1). The
Heavy Ion Fusion Virtual National Laboratory (HIF-VNL) is also developing the
intense ion beams needed to drive matter to the regimes required for High Energy
Density Physics. A possible scenario for accessing the Warm Density Matter regime
(temperatures of 1�10 eV ) would be to accelerate one beam of single charged Neon
ions to an energy of 30 MeV and a current of 1�2 kA, compress it to a short pulse of
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Figure 1-1: IFE power plant.

0.5�1.0 ns, and focus the beam to a spot size of 1 mm, achieving a peak deposition
of 1011J/m3 (Figure 1-2).

The common beam physics required to obtain such densities involves high bright-
ness beam injection and acceleration, neutralized drift compression, and �nal focus
optics that can generate the necessarily small focal spots in space and time. Accel-
erators producing appropriately tailored energy pro�les of intense heavy ion beams
can provide a useful tool for creating uniform high energy density matter to study
the strongly coupled plasma physics of warm dense matter in the near term, and for
inertial fusion in the longer term. Both fusion and high energy density physics appli-
cations of heavy ion beams require understanding the fundamental physics limits to
the compression of ion beams in both space and time before they reach the target,
as well as a basic understanding of collective beam-plasma interaction processes and
beam energy deposition pro�les within the dense plasma targets.
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Figure 1-2: HEDP facility.

1.1.1 Heavy ion fusion (HIF)

Fusion is the reaction in which two light atoms, such as atoms of hydrogen, combine
or fuse to form a heavier atom, such as an atom of helium (Figure 1-3). In the process,
some of the mass of the hydrogen is converted into energy. Hydrogen atoms repel
each other due to the electrical charge of their core or nucleus. For fusion to occur,
the atoms of hydrogen must be heated to extremely high temperatures (millions of
◦C) so they have enough thermal energy to overcome this repulsion, and then they
must be held together or con�ned long enough for fusion to occur.

The US Department of Energy (DOE) supports two major fusion-research pro-
grams, one based on the magnetic con�nement of large volumes of low-density fusion
fuel, the other on the inertial-con�nement of small, high-density targets of the same
fuel. With the magnetic con�nement fusion, strong magnetic �elds hold the electri-
cally charged or ionized atoms together as they are heated. With the inertial con-
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Figure 1-3: Fusion.

�nement fusion (ICF), a tiny pellet of frozen hydrogen is compressed and heated so
quickly that fusion occurs before the atoms can �y apart, so the reaction is con�ned,
in e�ect, by the inertia of the fuel. With ICF (Figure 1-4), the fuel capsule consists
of a hollow shell of frozen deuterium, and tritium which is set inside a chamber a few
millimeters in size. This frozen shell of thermonuclear fuel is surrounded by an outer
"ablation" layer that is rapidly heated by energetic laser or charged-particle beams
until it turns to plasma. The plasma �ying out from the ablation layer implodes the
fuel, compressing its density about a thousand times and causing it to burn. If the
fuel burns rapidly enough, it is con�ned by its own inertia and requires no external
con�nement system. This con�nement lasts long enough for the reaction to produce
energy.

In July of 1976, a meeting was held in Berkeley, California, to discuss an idea
for using accelerator technology to produce fusion energy that was �rst proposed by
Alfred Maschke and Denis Keefe [1]. The issue discussed was whether intense, short
bursts of high powered heavy ion beams could ignite thermonuclear fuel con�ned by
its own inertia so as to produce a net gain of energy. The implosion that ignites the
fuel is set o� or driven by high-powered beams of heavy ions such as xenon, mercury,
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Figure 1-4: ICF.

or cesium, which are focused on the capsule. At such a high current, space-charge
forces�the mutual repulsion among so many positively charged ions�become a serious
impediment. The accepted solution is to simultaneously bombard a fuel capsule with
a large number of independently focused, lower current beams. Since that date,
scientists and engineers in the USA, Europe and Japan began working on techniques
of accelerating, transporting, and focusing heavy ion beams at higher currents than
ever before.

The fusion target most compatible with HIF is the so-called �indirect drive target�
which consists of a metal shell or Hohlraum containing a spherical shell of frozen
thermonuclear fuel (Figure 1-5). The heated Hohlraum emits intense X-rays that
compress the fuel capsule to thousands of times its initial density and heat it, near
the center, to thermonuclear temperatures. The key requirement for the beams used
to heat an inertial-fusion target is power density. During the brief time the target is
being heated, energy must be deposited at a rate of about 4× 1014 W .

In principle, both lasers and beams of charged particles are able to meet this re-
quirement. To date, most research has focused on developing high-power lasers to
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Figure 1-5: IFE targets.

study target ignition, like in the National Ignition Facility (NIF), which is currently
the most important physics issue for inertial fusion. Proof-of-principle experiments
like these, however, are designed to operate at few shots per day, so repetition rate
and e�ciency are unimportant. Commercial energy production imposes additional re-
quirements on an inertial-fusion driver. Besides producing the required power density,
a commercial driver must also have an adequate repetition rate and be e�cient and
reliable. These added requirements are best satis�ed by ion accelerators. Accelerators
have been shown to work reliably at high repetition rates for ten years or more, giving
them a better demonstrated reliability than large laser systems. For these reasons,
committees chartered by the US Department of Energy and by Congress have iden-
ti�ed ion accelerators as the most promising drivers for inertial-fusion power plants.
Ion drivers for fusion are expected to share the same basic technology of existing
accelerators; however, the unusual demands for very large instantaneous beam power
and a small (∼3 mm) focal spot require a substantial revision of conventional designs.
A low transverse beam temperature or emittance is essential for a small focal spot,
so low-temperature injectors with a high current density are being developed. To
manage the large space charge of the ions, conceptual designs accelerate many beams
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Figure 1-6: HIF Driver.

in parallel, which also require the beam duration to be reduced from its initial value,
by about three orders of magnitude. Much of the present research is directed toward
meeting these stringent requirements.

A schematic diagram of a generic induction accelerator designed to produce 100
kA of cesium ions at 4 GeV is shown in Figure 1-6. To achieve 100 kA, it uses several
methods: multiple beams, beam combining, acceleration, and longitudinal bunching.
The accelerator systems and beam manipulations found in typical heavy-ion driver
designs are represented by boxes. Typical ion kinetic energy, beam current, and pulse
length at various points in the accelerator are also shown in Figure 1-6.

Typical parameters at the target are: Total Beam Energy of 5 MJ , Focal Spot
Radius of 3 mm, Ion Range of 0.1 g/cm2 (1 mm in typical materials), Pulse Duration
of 10 ns, Peak Power of 400 TW , Ion Energy of 3�10 GeV , Current on Target of 40
kA (total), Ion Mass of 200 amu. The target chamber and �nal focus requirements
add more constraints: Target yield requires the repetition rate to be about 5 Hz for
an attractive power plant of ∼1 GW . Thermal and mechanical stresses require the
stando� from the target to the wall to be about 5 m. Chromatic aberration of optical
system requires the energy variation to be less than 0.3%. Stando� and spot size
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Figure 1-7: Beam quality preservation.

require the transverse beam temperature to be less than 1 keV .
There are many scienti�c and technical challenges that remain before a practi-

cal HIF power plant can be realized. The main scienti�c challenge (Figure 1-7) is
to accelerate, compress and focus short bunches of heavy ion beams at high beam
currents and high peak-power levels required to drive targets, while preserving high
beam brightness (i.e., highly parallel motion of ions co-moving within the ion bunch)
su�cient to focus onto targets of a few millimeters in size. Another scienti�c chal-
lenge is to understand how the intense ion-beam pulses interact with a low-density
gas and plasma in the fusion chamber while they travel to the target.

1.1.2 High energy density physics (HEDP)

High Energy Density Physics is a new frontier of physics with multiple applications.
The physics and applications of this new discipline are described in detail in two
recent reports [2,3]. Of particular interest to the ion beam community is the Warm
Dense Matter regime (1�10 eV ) where the plasma is strongly coupled.

Heavy ion beams have a number of advantages as drivers of targets to create mat-
ter with extremely high energy density. First, heavy ions have a range exceeding the
mean-free-path of thermal x-rays, so that they can penetrate and deposit most of
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Figure 1-8: Bragg peak heating.

their energy deep inside the targets. Second, the range of heavy ion beams in dense
plasma targets is determined primarily by Coulomb collisions with the target elec-
trons; the ions slow down with minimal side-scattering, and their energy deposition
has a pronounced peak in the rate of energy loss dE/dx that increases with the beam
ion charge state Z. Also isochoric heating of substantial volumes to uniform, elevated
temperatures are expected to be achievable using heavy ion beams. These properties
make heavy ions an excellent candidate for high energy density physics studies, where
thin target plasmas would be uniformly heated by locating the deposition peak near
the target center (Bragg peak heating). Figure 1-8 shows the technique used in ex-
periments at the Gesellschaft fuer Schwerionenforschung (GSI) in Germany, and the
technique proposed for the experiments at HIF-VNL.

The primary scienti�c challenge in exploiting these desirable properties in the
creation of high energy density matter conditions in the laboratory is to compress
the beam in time (by 1000 times overall, requiring 10�100 times more longitudinal
bunch compression than the present state-of-the-art) to a pulse length that is short
compared to the target disassembly time, while simultaneously compressing the beam
in the transverse direction (by 10 times) to a small focal spot size for high local
deposition energy density. Proposed new experiments, like the Neutralized Drift
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Compression Experiments (NDCX series) [4], compressing intense ion beams within
a neutralizing plasma would signi�cantly extend the beam current into high-intensity
regimes where the beam would not otherwise propagate in the absence of background
plasma, and where beam-plasma collective e�ects with longitudinal and azimuthal
magnetic focusing �elds have not been previously explored. For low energy ions
(in the few to tens of MeV range), requirements to study strongly-coupled plasma
properties in the warm dense matter regime are: target foils of thickness a few to
tens of microns, 1 to 20 Joules (in a single beam), 0.5 to 10 eV temperature, 0.2 to
2 nanosecond �nal pulse duration, and 0.5 to 2 mm diameter focal spot size.

A basic understanding of the collective processes and nonlinear dynamics of in-
tense, high-brightness, heavy ion beams, and a determination of how best to create,
accelerate, transport, compress and focus these beams to a small spot size are critical
to achieving the scienti�c objectives of heavy ion fusion and ion-beam-driven studies
of warm dense matter. Most of the kinetic energy of heavy-ion beams is in the di-
rected motion of the beam particles, but a small fraction is in random kinetic energy,
characterized by the e�ective temperature of the beam particles. Plasma electrons
can be used to neutralize much of the repulsive space charge that resists the beam
compression in time and space, but the beam temperature ultimately limits the small-
est achievable spot size and pulse duration after the space charge forces are removed
from the beam inside plasmas. To minimize the beam temperature, and thereby
maximize the energy deposition in the target, the beam dynamics must be controlled
with high precision throughout the entire dynamical trajectory, using accurately po-
sitioned and tuned con�ning magnets, carefully tailored accelerating �elds, and �nal
charge neutralization techniques that do not degrade the beam quality.

Accelerators for both high energy density physics and fusion must initially inject
su�ciently bright (low temperature) beams, accelerate the heavy ions to the desired
energy range, and then longitudinally compress and radially focus the beams onto the
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target with minimal growth in the longitudinal beam temperature (much less than a
factor of 10 to allow overall axial bunch compression by a factor of 100 or more), and
with minimum transverse temperature growth (much less than a factor of 10 to allow
radial focusing by more than a factor of 10).

1.2 Integrated Beam Systems for Highly Compressed

Ion Beams

The concept of integrated beam systems, which follow an ion beam from the source
to the target, is a key aspect for achieving the HIF and HEDP goals. The ability
to produce a highly compressed ion beam at the target depends ultimately on our
understanding of the ion beam history from the source, through the accelerator and
the �nal focus systems, to the target. The development path towards an ultimate HIF
or HEDP driver has to involve several intermediate proof-of-principle experiments.
The Integrated Research Experiment (IRE) [5] and the Integrated Beam Experiment
(IBX) [6] described in Section 1.2.2 are two projects that have been proposed. The
Neutralized Transport Experiment (NTX), the subject of the present thesis, may be
considered the �rst of such integrated beam experiments (see Section 1.2.3). Before
we consider these integrated beam experiments, we review in Section 1.2.1 the driver
issues addressed in the past with small scale experiments.

1.2.1 HIF driver and small scale experiments

In order to accelerate enough ions to deposit the ∼5MJ of energy needed to implode
and ignite the target, while minimizing the diameter (and therefore the cost) of the
accelerator, the accelerated beams must be very intense. Thus one major task of
the heavy ion fusion research program is to determine the stability and behavior of
these intense beams. Since the charge can not be transported economically in a single

33



Figure 1-9: HIF-Driver-requirements.

beam, the accelerator must transport in parallel a large array of beams (∼ 30�100,
depending on design). Cost optimization gives a time duration for the beams of tens
of microseconds at the beginning of the accelerator. The beams must arrive at the
�nal focusing system with low enough transverse temperature (emittance) that they
can be focused to the small spots required, and low enough longitudinal temperature
that aberrations in the �nal lens system do not enlarge the spot. The basic issues
fundamental to feasibility of heavy ion fusion drivers therefore are those of producing
low-emittance intense beams, maintaining good beam quality while accelerating to
a few GeV and performing all necessary beam manipulations including a) bending
the beam trajectory, b) compressing the beam longitudinally, and c) transporting the
focused beam through the target chamber environment without degrading the focal
spot (Figure 1-9).

The HIF-VNL has addressed many of these fundamental issues in small, relatively
inexpensive experiments where relevant physics parameters, as the beam perveance,
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important to particle dynamics are in the same range as in the driver, but the beam
is at low energy. Using this approach of small experiments at low kinetic energy, the
Heavy Ion Fusion program has investigated the stability of intense beams, including
the emittance growth inherent in beam shape and pro�le changes; the interaction
of the intense beam with the walls through image charge e�ects, and the e�ect on
the beam of certain beam manipulations such as longitudinal compression, transverse
combining of beams, and focusing to a spot.

These were experiments with ion density in the driver parameter range, and with
su�cient length to allow evolution of beam emittance over several cycles of the fre-
quencies of interest; but they were far from the parameter range of the driver in other
key features, and therefore could not explore certain issues.

There is a class of important phenomena which can also be explored at low en-
ergy, in short length experiments, but which requires high current beams. With
driver-scale beam radius comes a high space-charge potential, so that the beam can
interact strongly with any electrons produced. Three experiments are investigating
the interaction of intense beams with electrons. The High Current Experiment (HCX)
[7] is measuring the quantity and orbits of electrons produced if the beam is allowed
to scrape the vacuum wall (electron cloud e�ects). The Neutralized Transport Ex-
periment (NTX) [8] has been conducted to study neutralization-assisted focus of an
intense ion beam to a small spot. And the Neutralized Drift Compression Experiment
(NDCX1) [9] which studies the longitudinal compression of intense ion beams by fac-
tors of over an order of magnitude. When these high-current low-energy experiments
conclude, the program will have demonstrated the production, stable transport, ac-
celeration, compression, beam neutralization using plasmas, electron production and
control, and the �nal focus of intense space-charge-dominated beams. For each of
these processes, phase space changes have been measured and matched with exten-
sive particle-in-cell computer simulations.
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The HIF-VNL has made advances over the past several years that include: (i)
high current ion sources and injectors (0.1 to 1 A of potassium) that have been
shown to have adequate initial beam brightness (su�ciently low transverse and par-
allel temperatures) to meet the requirements at injection [10]; (ii) negligible beam
brightness degradation has been observed in the transport of 200 mA potassium ion
beams through electric and magnetic quadrupole focusing lattices including control
of electron cloud e�ects [7]; (iii) more than 95% of potassium beam space charge has
been neutralized with a preformed plasma over ∼1 meter lengths without deleterious
beam-plasma instabilities [8], and (iv) longitudinal compression of intense ion beams
[9].

A high brightness heavy ion accelerator for creating powerful beams to study warm
dense matter is also being designed at LBNL [11]. The components are an injector
that delivers ∼ 0.1µC of lithium beam, and an accelerator that boosts the energy to
about 3 MeV . Further beam manipulations will compress the beam to a �nal spot
radius of 1 mm and a pulse length of 1 ns. In order to reach those �nal parameters,
it is required to extract a high brightness beam and minimize the transverse and
longitudinal emittance growth along the accelerator. The injector is based on the
Accel-Decel concept [11] which enables the extraction of a high line charge density
beam from the ion source, and the accelerator is based on the Pulse Line Ion Accel-
erator concept [12], which uses a slow-wave structure based on a helical winding, on
which a voltage pulse is launched and propagated to generate the accelerating �elds
(Figure 1-10).

1.2.2 The integrated research experiment (IRE) and the inte-

grated beam experiment (IBX)

The U.S. Heavy Ion Fusion program has considered building a set of proof-of-principle
experiments which will demonstrate the feasibility of all driver beam manipulations
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Figure 1-10: High brightness injector for Warm Dense Matter applications.

which can be investigated at small scales. An intermediate-scale experiment, the In-
tegrated Beam Experiment (IBX) [6], is an experiment which would access important
areas of physics, and constitute an integrated test of much of the physics of the driver.
It would produce a base of data and experience which would lay the groundwork for a
larger, proof-of-performance experiment, the Integrated Research Experiment (IRE)
[5], a proof-of-performance experiment which would demonstrate all the physics and
technology necessary for a driver (Figure 1-11).The IRE must address a wide vari-
ety of scienti�c issues. Some of these issues are associated with high intensity beam
physics in the accelerator itself. In particular, the IRE must determine and, if pos-
sible, expand the limits on long-term transverse and longitudinal beam dynamics. It
must measure transverse and longitudinal emittance growth. It must determine under
what conditions there are longitudinal instabilities. If these instabilities are deleteri-
ous, it must provide a vehicle to develop countermeasures, e.g., feedback stabilization.
The IRE must allow us to study halo formation and its e�ect on required beam clear-
ance. It must allow us to study e�ects associated with high intensity beams such as
the presence of unwanted electrons (electron cloud e�ects). There are also important
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issues in the target chamber. Most heavy ion fusion concepts have, in the past, been
designed to operate at su�ciently high kinetic energy that beam neutralization in the
chamber is not required. Operation at lower kinetic energy (actually lower voltage)
leads to lower cost for induction linacs but requires beam neutralization. The IRE
must be capable of validating the unneutralized propagation mode and it must be ca-
pable of de�nitive research on the neutralized propagation modes such as neutralized
ballistic focusing and the various channel transport modes. The IRE must be capable
of addressing remaining target physics issues such as validating our understanding of
the beam-plasma interaction. Additionally, it would be desirable to be able to study
target physics issues such as �uid instabilities in direct drive and other topics in high
energy density physics.

Though each fundamental beam manipulation has been individually explored in
separate small scale experiments, in the driver they will be sequential, and the errors
and changes in the beam distribution function which result from previous manip-
ulations will be fed in as initial perturbations to the next area of transport. The
integration of all beam manipulations in a single small scale experiment will be one
of the chief scienti�c missions of the Integrated Beam Experiment (Figure 1-12). As
a result, the experiment will also benchmark computer codes which will be used to
design future experiments with end-to-end computer simulation. The science issues
which could not been investigated in previous small scale experiments are those which
require high energy, multiple beams, and long length scales. Simply extending the
length of the accelerator o�ers entry into signi�cant new physics without the higher
cost of accelerating to near driver scale energy or adding a large number of beams.
This is the choice that the Integrated Beam Experiment would represent. With one,
or a few, beams accelerated to tens of MeV (∼1/300 of the energy of a driver beam),
which means propagation over ∼70 meters, it would be possible to include all driver
beam manipulation sections (Figure 1-12) and test the integrated source to target
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physics. New phenomena that can be studied in such machine include longitudinal
wave production and propagation during acceleration and longitudinal pulse compres-
sion, and the beam emittance growth caused by these waves; longitudinal-transverse
coupling; e�ects of electrons on the ion beam; production of beam halo; evolution of
the shape of the beam head and tail, and production of longitudinal waves by this
process; long-length-scale emittance growth; investigation of limits to acceleration
rate; upstream correction of beam aiming at the �nal focus.

The main di�erences between the IBX and the IRE are consistent with this dif-
ference in scale, capability, and mission. They are: (1) the �nal kinetic energy of the
IRE would be a few 100 MeV , while for the IBX we envision 5�20 MeV , (2) the IBX
pulse length would be much shorter than that in the IRE in order to save induction
acceleration core cost, and (3) the IRE would be a signi�cant multibeam experiment
(∼30�100 beams), where the IBX is expected to have 1�to�a�few beams. The dif-
ference in number of beams and �nal kinetic energy imply a vast di�erence in total
current in the two experiments. The scienti�c mission of the IRE covers the beam
physics which can only be done at high energy or with the high total current implied
by high energy and large numbers of beams. Most of the multiple beam physics of
the driver would be studied �rst on the IRE, especially inductive e�ects that occur
only at high velocity, and the interaction of multiple beams and the electrons neu-
tralizing them in the target chamber. The e�ect on the longitudinal stability of the
interaction of the beams with the induction cores is another important topic. This
"beam loading" will be negligible in the IBX because of low beam velocity and the
small number of beams. The study of electron accumulation in the beam requires
a long pulse length, and therefore though much electron physics could be explored
on the IBX, a signi�cant part of the problem remains for the IRE. The IRE would
also give the �rst transport for lengths of the order of the driver length, providing a
de�nitive test of the e�ect of long transport on beam quality. For this reason much
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Figure 1-11: IRE-schematics.

of the physics �rst explored on the IBX would be tested again over long length scales
in the IRE. Finally, the IRE is expected to be capable of exploring some heavy-ion
target-interaction physics, while the IBX will not have the kinetic energy for this mis-
sion. The IRE would be capable of upgrade to an Engineering Test Facility (ETF)
which could test target chamber design.This is a key step for heavy ion fusion, which
would integrate the physics of previous experiments and introduce new capability for
exploration of physics of high importance to the program.

1.2.3 The neutralized transport experiment (NTX) as a �rst

integrated beam experiment

In preparation for the design and construction of the IBX and IRE, the Neutralized
Transport Experiment (NTX) has been designed to be the �rst integrated beam
experiment for the production of high energy density beams. NTX provides the �rst
experimental validation of neutralized ballistic transport of a space-charge-dominated
beam. It is an integrated beam experiment in the sense that the �nal focal spot
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Figure 1-12: IBX-schematics.
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size depends not only on the physics of neutralized ballistic transport but also on
the production of a high brightness source, and an understanding of the quadrupole
focusing system immediately upstream of the neutralized drift section. In support of
the NTX experiment, we have also developed and calibrated end�to�end simulations
that will be essential for future integrated experiments.

Although the NTX experiment uses a beam that is orders of magnitude lower in
current than a driver for heavy-ion fusion, a careful choice of parameters guarantees
that the transport physics closely matches that of a full-scale system. This beam
is required to hit a millimeter-sized target spot at the end of the drift section. The
objective of the NTX experiment and associated theory and simulations is to study the
various physical mechanisms that determine the �nal spot size (radius r ) at a given
distance (f) from the end of the last quadrupole. In a fusion driver, f is the stando�
distance required to keep the chamber wall and superconducting magnets properly
protected. The NTX �nal quadrupole focusing system produces a converging beam
at the entrance to the neutralized drift section where it focuses to a small spot. The
�nal spot is determined by the conditions of the beam produced at the source before
entering the quadrupole section, the beam dynamics in the magnetic lattice, and the
plasma neutralization dynamics in the drift section. The main issues are how to
control the emittance growth due to high order �elds from magnetic multipoles and
image �elds. This system serves as a prototype from which larger integrated systems
can evolve.

To date, beam-transport experiments through the NTX �nal-focus system have
produced high-perveance beams with the emittance and convergence angle needed for
chamber-transport experiments. These �rst experiments have demonstrated dramat-
ically improved focusing by passing the beam through a low-density plasma produced
by a metal-arc source and have studied the e�ects of a second plasma near the beam
waist, mimicking the e�ects of a photo ionized plasma near the fusion target. We have
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also compared the experimental �ndings with the results of numerical simulations.
In parallel to the transport experiments, two new diagnostic tools were developed.
The �rst, a re�nement of the conventional "pepper-pot" imaging technique, gives a
detailed time-resolved view of the 4-D transverse phase space for beams that have
good pulse-to-pulse reproducibility. Using this technique to map the 4-D phase-space
distribution at the exit of the NTX �nal-focus system provides initial conditions for
more realistic simulations of the neutralized-transport experiments. The other tool
is a non-intercepting diagnostic that uses a low-energy electron beam directed across
the NTX beam line to map out the transverse charge distribution of the ion beam.
Both diagnostic techniques provide information about the structure of the NTX beam
and facilitate our understanding of neutralization physics.

1.3 Key �ndings and thesis organization

This thesis describes the physics design, numerical simulations, construction and ex-
perimental results of the Neutralized Transport Experiment (NTX) built at the Heavy
Ion Fusion Virtual National Laboratory. NTX is the �rst successful integrated beam
system experiment that explores various physical phenomena, and determines the �-
nal spot size of a high intensity ion beam on a scaled version of a Heavy Ion Fusion
driver. The �nal spot size is determined by the conditions of the beam produced in the
injector, the beam dynamics in the focusing lattice, and the plasma neutralization
dynamics in the �nal transport. A high brightness ion source using an aperturing
technique delivers 25 mA of single charged potassium ion beam at 300 keV and a
normalized edge emittance of 0.05 π mm-mr. The ion beam is injected into a large
bore magnetic quadrupole lattice, which produces a 20 mm radius beam converging
at 20 mr. The converging ion beam is further injected into a plasma neutralization
drift section where it is compressed ballistically down to a 1 mm spot size.
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NTX provides the �rst experimental proof of plasma neutralized ballistic transport
of a space-charge dominated ion beam, the information about higher order aberra-
tion e�ects on the spot size, the validation of numerical tools based on excellent
agreement between measurements and numerical simulations over a broad parameter
regime, and the development of new diagnostics to study the ion beam dynamics.
The theoretical and experimental results are presented on the beam dynamics in the
ion diode, downstream quadrupole lattice, and �nal neutralized transport.

The main contribution of this thesis is the conclusion that a challenging problem
as is the concentration of a large amount of particles in a small space can be accom-
plished by following a careful integration of theory, design, computer simulations and
experimental measurements to produce the required result. The main challenges in
the production of a high concentration of beam power in a small volume are a reliable
and accurate end�to�end simulation of the beam dynamics taking into account as
much information as possible about the external �elds and beam initial conditions,
control of secondary electrons, and accurate beam diagnostics to measure the phase
space distribution at various locations to compare with expected results as well as to
reinitialize the simulation program. This paradigm is used in the design, construction
and operation of the Neutralized Transport Experiment (NTX).

This thesis is organized as follows:

Chapter 2 gives an overview of the Neutralized Transport Experiment (NTX).
The physics of neutralized transport for driver-scale beams is reviewed in Section
2.1 and used to explain the scale and experimental goals of NTX in Section 2.2.
In Section 2.3, we describe the NTX beam-line layout. Section 2.4 describes the
diagnostic suite, including a detailed description of two new diagnostics developed
for NTX: an improved optical technique for mapping the 4-D transverse phase-space
of the beam, and a non-intercepting diagnostic to measure the beam charge density.
These improved measurement techniques are essential for quantitative validation of
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code predictions. Section 2.5 describes the numerical tools used for the design and
numerical simulations of the NTX experiment.

The beam line has three principal components: the injector, the magnetic-focus
lattice, and the neutralized-transport section. Each of these components presents
design challenges, and we discuss the design and characterization of each.

Chapter 3 describes the design of the diode that generates the ions from a source,
the aperturing system that removes the unwanted ions to produce a high brightness
ion beam, and a secondary-electron control system. It also describes the experimental
results of the �nal source design used in NTX.

Chapter 4 gives a detailed account of the theoretical, computational and experi-
mental e�ort to design a Final Focus System that produces a high quality beam with
the appropriate initial condition to be injected into the neutralized drift section.

In Chapter 5, the components of the neutralized transport system and experimen-
tal results from NTX are presented. Measurements of beam transport through the
magnetic lattice are presented �rst and compared with particle-in-cell (PIC) simula-
tions made using the computer code WARP [13]. We then present the corresponding
data in the neutralized drift section, along with theoretical results from WARP and
the electromagnetic PIC code LSP [14, 15].

Chapter 6 summarizes NTX accomplishments to date, presents the conclusions,
and discusses the directions of future work.
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Chapter 2

Overview of the Neutralized

Transport Experiment NTX

The topic of �nal focus systems for high intensity beams has been an important
subject of theoretical [16-19], and experimental [20] e�orts since the beginning of the
Heavy Ion Fusion project in 1976. The �rst designs were derived from systems already
in use in particle accelerators for high energy physics where space-charge is negligi-
ble, and which incorporated sextupoles and octupoles elements for the correction of
chromatic and geometric aberrations (Figure 2-1).

Chromatic aberrations a�ect the focal spot radius due to deviations from the nom-
inal ion momentum causing a variation in the focal length produced by the magnet
system. These aberrations may result from initial transients in the injector, from
residual momentum tilt due to beam compression, or from the momentum spread, or
longitudinal emittance produced along the beam line. Geometric aberrations are due
to nonlinear external �elds and deviations from paraxial ray optics.

In HIF the space charge e�ects are dominant, and the well-known chromatic and
geometric e�ects are modi�ed by space charge. In addition, during the �nal drift of
the ion beam through the chamber, uncompensated space charge forces would lead
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Figure 2-1: Geometric and Chromatic aberrations.

to blow-up of the �nal focal spot.
In the more recent mainline scenario of a �nal focus system for an HIF driver [12],

the beam is transported in the �nal focus section through several strong large aperture
magnetic quadrupoles, and is then allowed to drift ballistically through neutralizing
plasma in a low-density (millitorr) gas onto the target (Figure 2-2).

There are nonlinear processes both in the magnetic section as well as in the neu-
tralized transport section. To investigate these phenomena, the Neutralized Transport
Experiment (NTX) was built at LBNL [8]. The NTX beamline (Figure 2-3) consists
of 4 large bore quadrupoles followed by a neutralized drift section. A low emittance
K+ beam is made to traverse this 4-quad lattice, at the exit of which, the beam enters
a 1-meter long drift section with an injected plasma. The beam is diagnosed at the
exit of the 4-quad section as well as the end of the drift section.

This chapter provides an overview of the NTX experiment. NTX is designed to
study the physics of a �nal focus system for an HIF driver. The key driver issues
and the scaling laws that justify a small scale experiment are described in Section
2.1. The speci�c objectives and overall layout of NTX are discussed in Section 2.2
and 2.3. The diagnostic and simulation tools used througout the entire experimental
campaign are presented in Sections 2.4 and 2.5 respectively.
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Figure 2-2: Neutralized Final Focus System.

Figure 2-3: Side view of NTX.
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2.1 NTX, a Prototype Integrated Beam Experiment

for the Final Focus System for Heavy Ion Fusion

The NTX is intended as an integrated experiment to test simultaneously various
aspects of a scaled version of a heavy ion fusion driver or HEDP facility, including
the injector, the transport through a magnetic quadrupole lattice, the �nal focusing,
and the transport through a plasma-neutralization region.

The �nal transport section in a heavy-ion inertial-con�nement fusion system poses
major challenges. After exiting the �nal-focus magnet system, intense beams of ions
with a current totaling tens of kiloamperes must drift without further external focus-
ing to the center of a target chamber, a distance of about 6 m in recent conceptual
designs [21]. To obtain adequate target gain, these beams must all hit spots a few
millimeters in diameter on the ends of the cylindrical fusion target.

From the very early days of heavy-ion fusion (HIF), �nal focusing has been a sub-
ject of intense study [22-24], with perhaps the most comprehensive study being that
of HIBALL-II [25]. These studies assumed that the chamber could have a su�ciently
high vacuum that beam ions would experience no forces other than their collective
space charge during the �nal transport to the target. In this �nal drift section, the
beam space charge acts to enlarge the focal spot, so the beam species, current, and
energy in early studies were chosen to make the space-charge blowup manageable.
For example, Olson [24] proposed a baseline case using 30 kA of 10 GeV U+1 ions in
a moderate vacuum of 10−4�10−3 Torr. Numerical and experimental studies indicate
that such so-called �ballistic� transport could, in fact, be feasible. A 1998 scaled ex-
periment [20] based on the HIBALL-II �nal-focus design was performed at Lawrence
Berkeley National Laboratory (LBNL), obtaining excellent agreement between theory
and experiment. Also, detailed numerical simulations of driver-scale systems showed
good spot sizes for the Olson parameters [26].
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Since the HIBALL-II study [25], however, several signi�cant shifts in conceptual
designs for HIF drivers have made ballistic chamber transport unattractive. One
change has been the development of indirect-drive targets [27], which give a more
symmetrical energy deposition on the deuterium-tritium capsule than the direct-
drive HIBALL-II target [25], but require more energy to heat the cylindrical metal
�hohlraum� enclosing the capsule. At the same time, driver economics favors beams
with lower kinetic energy, at the cost of requiring higher total beam current. This
higher current can be partly o�set by using more beams, but even with an ion mass
of 200 amu, more than 450 beams would be required to reduce space-charge e�ects
su�ciently to allow ballistic transport. Another development has been the adoption
of �thick-liquid� walls as the mainline US approach to protecting the fusion chamber.
In HYLIFE-II [28] and more recent designs [21], jets of molten salt �ll much of the
volume between the target and the chamber interior wall and absorb much of the blast
wave and the radiation. The vapor from these jets has a pressure about 0.6 mTorr
and consists mainly of Be2F and LiF. Due to collisional stripping by this gas, a singly
charged ion beam develops a wide spread of charge states by the time it reaches the
target, with the average charge state being about two. The e�ective perveance of the
beam is not increased by a similar factor because the liberated electrons propagate
along with the beam, but the beam itself becomes much more sensitive to the net
space-charge �eld. Finally, the distributed-radiator targets [29,30] developed in re-
cent years exacerbate the problem of beam focusing by requiring that beam energy be
deposited in a narrow annulus on the hohlraum ends, rather than over the entire end
surfaces. The gain for these targets degrades if the focal radii of the beams exceed two
millimeters, thus requiring beams with a low transverse temperature and net charge.

A recent HIF driver study [21] reconciles these stringent �nal-focus requirements.
A pivotal feature of this design is the use of low-density plasma in the beam line
between the �nal-focus magnets and the chamber to neutralize much of the beam
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space charge [14, 15, 31]. If there are enough electrons in the volume swept out by
a beam, they can be trapped by the space-charge potential well of the beam and
provide charge neutralization during the �nal transport to the target, thus allow-
ing substantial beam currents while still maintaining the low net charge needed for
good focus. In addition, after the target has been pre-heated by lower-current �foot�
pulses, thermal radiation from the target will photoionize the nearby background gas,
providing additional neutralization as the beam approaches the target.

2.2 NTX Objectives

The Neutralized Transport Experiment (NTX) has been designed to study, on a re-
duced scale, the physics of the �nal focus and neutralized transport of beams with
high space charge. The experiment was designed as part of the research program
developed by the Virtual National Laboratory for Heavy-Ion Fusion, a formal col-
laboration of Lawrence Berkeley National Laboratory (LBNL), Lawrence Livermore
National Laboratory (LLNL), and Princeton Plasma Physics Laboratory (PPPL).
Construction of the experiment at LBNL began in FY01, and the �rst transport
experiments were carried out in the Fall of 2002. As the photograph in Figure 2-4
shows, the experiment is quite small in scale. Both the current and the energy are
orders of magnitude smaller than driver parameters, but we have chosen the beam
and lattice parameters so that the transverse dynamics and neutralization physics
of NTX closely model a full-scale system. The experiment is designed to survey a
wide parameter space, and there are two independent plasma sources to simulate the
upstream neutralizing plasma and the photoionized plasma around the target. While
the experiment is speci�cally designed to study the physics of neutralized chamber
transport for heavy-ion fusion, the technique of plasma neutralization may also be ap-
plicable to other situations requiring the focusing of space-charge-dominated beams.
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Figure 2-4: Photograph of the Neutralized Transport Experiment (NTX).

Two such situations are the focusing of collider beams near the interaction point and
the study of high-energy physics using intense particle beams.

Two quantities are important for choosing the scaled parameters of NTX. The
generalized perveance Q, loosely de�ned as the ratio of the edge potential of a beam
to its directed kinetic energy [32], characterizes the importance of space charge in
the transverse dynamics of a beam. The unnormalized emittance ε is a measure
of the transverse phase-space area of the beam [33]. During the �nal transport, the
perveance and emittance are constant in the absence of collisions and nonlinear space-
charge �elds, and for any particular choice of the initial beam radius and convergence
angle, they determine the transverse beam dynamics during �nal transport.
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Perveance is dimensionless and, for a nonrelativistic beam, is given in SI units by

Q =
1

4πε0

2ZeIb
miv3

i

, (2.1)

where Ib is the beam current, and Z,mi, and vi are respectively the charge state,
mass, and velocity of the beam ions. Early analytical work by Olson [24] estimated
that the upper perveance limit for ballistic transport is Q ∼= 1.6× 10−5. The earlier
HIF designs, which had Q ≤ 10−6, satisfy this criterion comfortably, whereas recent
designs typically require Q to be a few times 10−4. The NTX injector can generate
beams with Q values up to about 10−3. This higher perveance has important rami�-
cations for the focusing and �nal transport of an intense beam. Since the beam radius
increases with perveance when the transverse dynamics is dominated by space charge,
beams in a modern driver will sample more �eld aberrations in the �nal-focus magnets
than in older designs, assuming a similar magnet design. These aberrations introduce
radial and azimuthal variations in the focal distance, which degrades the focal spot.
Due to their high perveance, beams for modern driver designs require some form of
external neutralization after �nal focus in order to achieve an acceptable focal-spot
radius.

The use of low-density plasmas to neutralize space-charge-dominated ion beams
during the �nal transport has been studied analytically and numerically in recent
years [34-41]. Due to the thick liquid wall in a modern fusion chamber, it is di�cult
to �ll the inside of the chamber with a plasma at the repetition rate of several shots
per second needed for a driver. However, it is straightforward to inject a low-density
plasma, referred to as a �plasma plug,� along the beam path between the last �nal-
focus magnet and the chamber entrance. An ion beam passing through this plasma
drags along electrons as it exits, and these co-moving electrons then provide substan-
tial neutralization for the beam along the remaining path to the target. Two other
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processes inescapably generate plasma in the chamber. First, collisions between the
beam and the background gas ionize the gas molecules in addition to stripping elec-
trons from the beam ions. Second, once the target becomes hot, photons are emitted
which photoionize the background vapor in the region around the target. This pho-
toionized plasma provides additional neutralization during the critical �nal part of
the beam trajectory. None of these three plasma sources alone provides su�cient neu-
tralization [34, 35, 39, 40], but detailed numerical simulations indicate that together
they can give a usable beam focal-spot radius. One of the signi�cant theoretical suc-
cesses in recent years is use of the electromagnetic PIC code LSP to demonstrate the
technical feasibility of a driver point design that meets all of the constraints imposed
by the target, focusing, neutronics, and chamber-engineering considerations [21].

In addition to adequate neutralization, achieving a usable focal spot also requires
that the transverse emittance of each beam remain su�ciently small during the �nal
transport. In this thesis, we de�ne emittance in terms of distribution averages over
the transverse phase-space coordinates x, y, x′ ≡ dx/dz and y′ ≡ dy/dz by

ε ≡ √εxεy, (2.2)

where εx and εy are the unnormalized �edge� emittances [33] in the two transverse
directions, de�ned as

εx = 4

√
〈x2〉 〈x′2〉 − 〈xx′〉2 (2.3)

and
εy = 4

√
〈y2〉 〈y′2〉 − 〈yy′〉2. (2.4)

The unnormalized �edge� emittances, which are four times the root-mean-square
(rms) emittances, can be increased by nonlinearities both in the beam space-charge
�eld and in the external focusing �elds. The emittances of the beam entering the �nal-
focus lattice are determined by the values at injection plus what are predicted to be
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small growth during acceleration and compression. The �nal-focus magnetic lattice,
however, is a potentially signi�cant source of emittance growth. The primary function
of this magnetic system is to prepare a converging beam for the �nal transport. To
develop the needed convergence angle, a strongly space-charged-dominated ion beam
must experience large envelope oscillations, during which phase-space distortions due
to geometric aberrations in the magnetic �elds can lead to emittance growth. While
these higher-order e�ects are well known in �nal-focus systems with negligible space-
charge e�ects, aberrations in space-charge-dominated beams remain an issue to be
addressed in this thesis.

The major objectives of NTX are to study the �nal focusing and neutralized trans-
port of space-charge-dominated heavy-ion beams, and to validate the physics models
in the numerical simulations. To expedite the experiment and minimize the cost, we
choose to use a beam with lower-mass ions than in a driver and a particle energy
that is four orders of magnitude smaller. Also, the physical size of the beam line is
about one sixth of the corresponding driver section. The remaining beam parame-
ters are chosen to ensure that results from this low-energy experiment are relevant to
the design of a HIF driver. By scaling the equations for transverse dynamics in the
same manner as an earlier scaled �nal-focus experiment [20], we �nd that driver-like
dynamics is obtained by using the same perveance as a driver, by reducing both the
emittance and initial beam radius by the ratio of lattice lengths, and by scaling the
�nal-focus magnetic �elds appropriately with the ion mass and speed.

This scaling is easily shown to preserve the beam response both to the �nal-focus
quadrupole �elds and to any higher-order magnet aberrations. A low-energy beam
will therefore have the same envelope trajectory and emittance-growth characteristics
as a high-energy beam with the same perveance, provided that image forces and
interaction with any background gas are negligible. This makes the NTX �nal-focus
lattice a good model of a driver-scale lattice.
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A small-scale experiment can also address key aspects of driver-scale neutralization
physics. Theoretical work by Olson [24], as well as the results of recent simulations
[39], indicates that the degree of neutralization from a plasma plug depends princi-
pally on the perveance, provided that the plasma has su�ciently high charge density
and is in contact with a metal wall that can emit electrons. Space-charge-limited
emission at this boundary is crucial because emitted electrons replace those captured
by a passing ion beam and thereby maintain the quasineutrality of the plasma. The
physics of beam neutralization by the photoionized plasma around the target is like-
wise determined mainly by the beam perveance and is modeled on NTX by generating
a plasma with an appropriate density near the beam focal point.

The �nal objective of NTX is to make detailed, quantitative comparisons of exper-
imental data with the results of numerical simulations. These comparisons will both
help re�ne the numerical models in the simulation codes and guide improvements in
the experimental design and operation. A clear demonstration of the predictive capa-
bility of these codes will justify our reliance on them for designing later experiments.

Of course, several driver issues cannot be addressed on NTX. Due to the low
current in the experiment, no self-focusing by the beam net current will occur, and
indeed, the e�ect is expected to be minor even at driver parameters. Image forces in
the magnetic-transport section are likewise negligible on NTX. Cross-sections for col-
lisional ionization of the beam and background gas have very di�erent cross-sections
for low-energy and high-energy ions, so the e�ects of collisions cannot be modeled in
a scaled experiment. The e�ects of many beams overlapping as they converge on a
target are obviously missing from a single-beam experiment like NTX. Finally, pho-
toionization of an ion beam by X rays from the heated target cannot be studied due
to the lack of suitable radiation source. Future experiments on a larger scale than
NTX are needed to investigate these issues.
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Figure 2-5: Plan view of NTX .

2.3 NTX Beamline and Parameters

NTX uses a 300�400 keV beam of singly charged potassium (K+) ions to study the
�nal focusing and plasma neutralization of a strongly space-charge-dominated ion
beam. The energy, which is small compared with typical driver energies, is deter-
mined by the decision to use a pulsed-power source used from an earlier experiment.
However, as discussed in Section 2.2, NTX replicates driver-like transverse dynamics
by a careful choice of beam and lattice parameters. The beam source is designed to
produce a current of 75 mA, corresponding to a perveance of about 10−3, and we use
beam aperturing to achieve the goals of variable perveance and low emittance. The
apertures inserted after the source allow the current and perveance to be reduced
by as much as an order of magnitude, and excluding the less intense portion of the
beam near the edge simultaneously reduces the beam emittance and increases the
brightness.
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The drawing of the NTX beam line in Figure 2-5 shows the layout and scale of the
experiment. Pulsed power is provided by the same Marx generator that was used in
the Multiple Beam Experiment (MBE-4) [42]. This generator can deliver a pulse of
up to 500 kV with a maximum duration of about 20 µs. A timed crowbar switch on
NTX produces pulses with a rise time of 0.5�1 µs and a ��at-top� of about 10 µs. The
remaining NTX components are designed speci�cally for the experiment and consist
of three major sections: a low-emittance potassium gun [43], a magnetic transport
section with four pulsed quadrupoles [44], and a one-meter-long drift section with
plasma neutralization [45].

The K+ beam is produced by a standard hot-plate source [46], and the perveance
and emittance are controlled by passing the beam through a metal aperture after the
diode. Negatively biased rings on either side are used to capture electrons liberated
by ions striking the aperture plate. The change in transverse emittance that results
from aperturing primarily a�ects the focal-spot size. For the space-charge-dominated
NTX beam, WARP [13] simulations show that dynamics in the �nal-focus lattice is
insensitive to the beam emittance.

Although the NTX beam typically has a 2-cm radius as it enters and exits the
magnetic-transport section, the magnets nonetheless have a 15-cm radius bore. Any
four-magnet focusing system gives the beam a large radial excursion before the last
magnet, and in NTX, we want to handle perveances that are substantially higher than
expected in a driver, so the large bore is used to accommodate large radius swings,
while still keeping the beam away from the more nonlinear magnetic �elds near the
wall. The choice of a 60-cm half-lattice period and 2.4-m total length follows from
practical considerations, such as the available power supplies for the magnets and
limits on the overall length of NTX.

The layout of the 1-m NTX plasma neutralization section is shown in Figure 2-6,
and the sketch in Figure 2-7 shows how it functions. The upstream plasma, modeling
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Figure 2-6: Plan view of the NTX Neutralization Section.

the plasma plug that neutralizes the beam after it exits the �nal-focus section, consists
mainly of electrons and doubly charged aluminum ions from a pulsed cathode-arc
source (sometimes called a metal-vapor vacuum arc or MEVVA source). The plasma
itself is centered 0.25 m after the end of the last magnet so that it is well away from
the fringe �elds, and it extends about 0.05 m in both directions. After the beam exits
this �rst plasma, it drifts 0.75 m through a 3.5-cm-radius beam pipe into a diagnostic
area at the nominal focal point. A second plasma generated at the center of the
cross simulates the photoionized gas that will surround a target hohlraum after it
has been heated by early low-current �foot� beams. This �target� plasma is generated
by a pulsed radio-frequency (rf) source and has a charge density approximating that
expected in a fusion chamber. A diagnostic box is placed at the focal point.
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Figure 2-7: Generic layout of a plasma-neutralization system.

2.4 Diagnostics

2.4.1 Single and double slit mechanical diagnostics

The initial measurements of the NTX beam were made with the same diagnostic
tools used on MBE-4 [42,47] and other early HIF experiments. A diagnostic box
containing various combinations of slits and Faraday cups is moved to the end of each
NTX section as the experiment is being assembled, and the beam is characterized at
each of these points. A Faraday cup, with a 2-cm entrance radius and a guard ring
biased to exclude electrons, is used to make time-dependent current measurements,
and a "slit-cup," consisting of a movable slit with an attached Faraday cup to measure
the transmitted current, is used to measure the line-integrated beam pro�le. A second
movable slit is used along with the slit-cup to map out the transverse phase space of
the beam by a standard double-slit technique [48]. The slit and the slit-cup, aligned
in parallel to the �rst slit and located behind it, are moved so as to sample either the
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Figure 2-8: Slit scanner diagnostics.

(x, x′) or (y, y′) phase space, as illustrated in Figure 2-8, with the collected current
being recorded for typically 400 or more shots. These data are then used to construct
contour plots of phase-space density in the various two-dimensional (2-D) planes. The
response time of the Faraday cup allows a time resolution of about 150 ns. In addition
to transverse emittance, these data yield other time-resolved quantities, such as the
beam size, centroid position, and density pro�le.

In addition to these conventional diagnostics, NTX now uses optical diagnostics
to provide detailed, time-resolved information about the ion-beam transverse phase
space. Work has also been performed to characterize a non-intercepting electron-
probe technique that provides information about the transverse structure of the beam
charge density. The design and implementation of these diagnostics are discussed in
the following subsections.
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2.4.2 Optical diagnostics

We have developed an optical diagnostic technique (Figure 2-9) for NTX as a faster
and more �exible alternative to the double-slit technique. This optical technique,
which is related to the gated beam imager (GBI) [49], uses scintillator plates im-
aged by an image-intensi�ed charge-coupled-device (CCD) camera. The GBI uses a
"pepper-pot" to create an array of beamlets that are imaged directly onto a gated
microchannel plate (MCP). The new NTX technique di�ers in two ways. First, a thin
sheet of scintillator material is substituted for the MCP imager, allowing the MCP to
be placed away from the beam line with the camera. Second, a single movable pin-
hole replaces the pepper-pot because the convergence of the NTX beam would cause
side-by-side beamlets to merge. The technique is simple, compact, and more �exible,
because only the scintillator material is placed in the path of the beam. Hundreds
of NTX shots are needed to map out the beam phase space than for the double-slit
method, but this requirement is manageable due to the reproducibility of the NTX
beam and the ease of each measurement.

For the images presented here, the scintillator material is a 98% aluminum oxide
ceramic. Charge neutralization is provided by a 90% transmission metallic mesh
(0.28-mm line spacing) placed on or near the surface of the scintillator. Beam ions
striking the mesh generate secondary electrons. The secondary electron yield from
beam ions striking the mesh is greater than ten electrons per ion, so su�cient free
electrons are generated on the mesh to charge-neutralize the insulating surface of the
scintillator. By applying a negative bias to the mesh, stray external electrons are
decelerated and de�ected away from the scintillator, limiting their contribution to
the optical image to negligible levels. The measured rise time of the scintillator is less
than 50 ns; while the fall time is about 1 µs. There is no evidence for saturation or
thermal quenching in the scintillator response. We tested linearity over the range of
measured intensities by imaging the same beam in horizontal and vertical slit scans.
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The local intensities in the two scans di�ered by an order of magnitude, but the
summed intensities of all images in each of the two scans agreed. The lifetime of the
scintillator material under intense ion beam bombardment is limited, but the current
and energy of NTX are su�ciently low that this limitation is not a concern. However,
accumulated damage to the metallic mesh at NTX parameters can cause a weaker
signal in portions of a scintillator image, a feature evident in some of the images.

Time-resolved beam images on the scintillator screen are captured with a Roper
Scienti�c gated-intensi�ed CCD camera viewing the scintillator through a vacuum
window, and images are processed using the public-domain program ImageJ. Figure
2-10 shows a typical beam image taken on NTX near the focal point.

Whole-beam scintillator images, like those in Figure 2-10, are the primary optical
diagnostics reported here, but a scintillator-based imaging technique is also being used
now to map the four-dimensional (4-D) phase-space distribution of the NTX [45]. The
phase-space distribution f(x, y, x′, y′) is measured over many shots by scanning the
beam cross section with a movable pinhole having a diameter of 20 thousands of
an inch. The transmitted beamlet then travels to the nominal focal point, about
1 m, where it strikes the scintillator plate. The position of the pinhole de�nes the
coordinates x and y, and from the image, we can extract the density distribution of x′

and y′. Figure 2-11 shows this technique schematically, along with selected images of
the individual beamlets that reveal a very detailed phase-space structure. A detailed
knowledge of the 4-D phase space is essential both for more realistic initializations of
neutralized-transport simulations and for understanding the NTX measurements.

2.4.3 Non-interception charge-density diagnostic

All the NTX diagnostics mentioned above entail inserting apparatus temporarily into
the beam line, either blocking or signi�cantly altering the ion beam. Moreover, since
characterization is not normally done while experimental data is being recorded, there
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Figure 2-9: Optical slit scanner diagnostics.

Figure 2-10: Typical image from optical diagnostics.
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Figure 2-11: Phase space optical scanner.
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Figure 2-12: Electron beam de�ection by ion beam space charge. (a) A transverse
cross-sectional view of an arbitrary charge distribution in the x and y directions.
Probe electrons of velocity vx are directed horizontally from left to right (−x to +x)
at various heights, y, and acquire a velocity vy orthogonal to vx, (b) an axisymmetric
nonrelativistic charged particle beam which is long relative to its transverse dimen-
sions, and where the charge density is a function of radius only, the electric �eld Er at
any given radial distance, r, from the beam center will be proportional to the charge
enclosed within a concentric cylindrical Gaussian surface of radius r, as shown by the
dashed circle.

is a possibility that beam parameters may change after being measured.
As an alternative, we have developed a non-intercepting beam diagnostic to char-

acterize an ion beam during its operation. By repeatedly measuring the de�ection of
a low-current electron beam propagating across the NTX beam, we can map out the
transverse charge density of the ion beam (Figure 2-12).
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For non-relativistic ion beams that are long compared with their cross section, an
electron injected on a plane perpendicular to the beam motion will remain on that
plane, i.e., the x− y plane in Figure 2-12(a). Under the assumption that the electron
moves in such a way that vx � vy, the trajectories can be considered straight lines
with a small angular de�ection after passing near the ion beam. Since the e-beam
accelerates when approaching the ion beam, and decelerates when moving away from
the ion beam, vx can be considered constant along the e-beam trajectory.

The de�ection angle can be obtained from the equation of motion

dvy
dt

= − e

m
Ey, (2.5)

where e and m are the charge and mass of the electron, and Eyis the electric �eld
produced by the ion beam charge distribution on the x− y plane.

Since vx = dx/dt, we have

dvy
dx

= − e

mvx
Ey, (2.6)

and

dθ

dx
= − e

mv2
x

Ey, (2.7)

where θ = vy/vx. Therefore, the de�ection angle is given by integrating Ey along the
e-beam trajectory, from the point where the e-beam enters the diagnostic box, to the
point where the e-beam hits a measuring device, like a scintillator.

θ = − e

mv2
x

∫
Eydx, (2.8)
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From Maxwells equation ∇•E = ρ/ε0, and since Ez is zero for the ion beam with
uniform density along its direction of motion, we have

∂Ex
∂x

+
∂Ey
∂y

=
ρ(x, y)

ε0

. (2.9)

Integrating this equation along an e-beam trajectory (y=constant) we obtain,

∫
∂Ex
∂x

dx+

∫
∂Ey
∂y

dx =
1

ε0

∫
ρ(x, y)dx. (2.10)

The �rst term is zero since Ex vanishes far away from the ion beam.
If we de�ne the current intercepted by a thin wire or a slit at position y and of

width dy as I(y), then

d

dy

∫
Eydx ∝ I(y). (2.11)

From Eq. (2.8) we obtain
I(y) ∝ dθ

dy
. (2.12)

Therefore a slit- or wire-scan current measurement can be related to an e-beam
de�ection scan measurement through its derivative. To determine, without making
any assumptions of charge distribution shape, the 2D charge density distribution, a
full set of de�ection measurements over many di�erent electron-beam directions x
and o�sets, y must be made. This procedure produces the Radon Transform of the
2D density distribution. Once the Radon Transform is obtained, various methods
of computing tomography can be used to invert the Radon Transform, yielding the
density distribution.

The above method of analysis simpli�es when the beam density distribution is ax-
isymmetric. Analytic solutions for various axisymmetric one-dimensional (1D) charge
distribution functions can be formulated. For example, Figure 2-12(b) shows an ax-
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isymmetric nonrelativistic charged particle beam which is long relative to its trans-
verse dimensions, and where the charge density is a function of radius only, the electric
�eld Er at any given radial distance, r, from the beam center will be proportional to
the charge enclosed within a concentric cylindrical Gaussian surface of radius r, as
shown by the dashed circle. For an electron beam passing through an ion beam, the
amount of line charge density �seen� by the e-beam will vary as the e-beam travels
through. This results in a decrease of the acquired transverse velocity, which has
a functional dependence on the e-beam o�set y from the ion beam axis, going to
zero for zero o�set y. By scanning the e-beam through various o�sets y, the radial
dependence of λ (and thus the volumetric charge density ρ) can be calculated. In
particular, for an exponentially decaying density distribution

ρ(r) = ρ0e
−r/r0 , (2.13)

the vertical aquired velocity vy is

vy ∝
∫ π/2

−π/2

(
1− e−y/r0 sec θ

)
dθ, (2.14)

where r0 is the exponential decay radius. Similar formulas can be derived for hard-
edged uniform, Gaussian, and Gaussian-hollow axisymmetric beam density distribu-
tions. Common to all solutions is the result that de�ection angle is invariant with
y, once the entire charge distribution is not intercepted. The above analyses assume
linear electron trajectories from x=-∞ to x=+∞ with a ground potential at in�nity.

The sub-millimeter electron beam has a current of 1�5 µA and an energy of 5�
8 kV . A chicane of four magnets, labeled D1�D4 in Figure 2-13, �rst de�ects its
trajectory some chosen distance above or below the beam axis, and then on the other
side of the NTX beam line, de�ects it back approximately to the original plane, where
its position is registered on a scintillator for optical analysis. The current and energy
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Figure 2-13: Sketch of the NTX non-intercepting beam diagnostics.

of the electron beam are chosen so that it will not signi�cantly perturb the NTX
beam but will itself be signi�cantly de�ected. Provided that the electron-beam space
charge is negligible compared with the NTX beam, the electrons will be de�ected
at a predictable angle that depends on the charge-density distribution of the NTX
beam, integrated along the electron-beam trajectory. By varying the strength of the
magnetic �elds on a series of NTX shots, the electron beam can pass through every
part of the ion beam, and the scintillator detects the resulting de�ections as functions
of time along each pulse.

Figure 2-14 shows a photograph of the assembled diagnostic box, with the electron
gun, magnets, and scintillator all placed inside a vacuum chamber maintained at
better than 10−7 Torr. The commercial electron gun has a LaB6 cathode that operates
at an energy of 5�10 keV and delivers a beam current that meets the requirement of
1�2 µA. The dipoles D1�D4 are iron-dominated to minimize the current requirement
and provide high �eld uniformity, and they are designed to operate inside the vacuum
chamber with the cathode. The detector is a Yttrium Aluminum Perovskite (YAP:Ce)
scintillator with a 100-nm aluminum coating on the front surface to drain accumulated
charge. A CCD camera is focused on the scintillator and is connected to a computer

71



Figure 2-14: Photograph of the NTX non-intercepting beam diagnostics.

to record image data. We measure ± 3-cm vertical displacement of the electron beam
while varying the current through magnets D1 and D2, con�rming that this diagnostic
can scan an ion beam with a diameter up to 6 cm. Results of this diagnostic and
design details are presented elsewhere, along with preliminary experimental �ndings
[50].

The diagnostic system has been installed in the NTX ion beam line to measure the
ion beam density pro�le. The measured pro�le is compared with a direct scintillator
measurement for the same ion beam parameters. Figure 2-15 shows the transverse
displacement of the e-beam trajectory by the ion beam as the e-beam scanning height
is varied relative to its axis to scan the ion beam radial pro�le. The lines with solid
diamonds and hollow circles show, respectively, the experimental data and theoretical
predictions. For the experimental data, the e-beam is vertically translated over a 4
cm height across the ion beam. A Python tracking code is used to model the e-beam
de�ection assuming an axissymmetric gaussian charge density distribution of 14 mm
width and λ = 2× 10−8C/m, e-beam energy of 8 keV and 2D (z, x) slab geometry.
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Figure 2-15: Transverse displacement of perturbed e-beam trajectory by an ion beam
as a function of unperturbed e- beam trajectory. Experimental (solid diamonds) and
calculated (hollow circles).

Figure 2-16 shows a comparison of the integrated ion beam density pro�les mea-
sured optically by placing a ceramic scintillator in front of the ion beam, and by the
e-beam system. The integrated densities are obtained by doing a least-square �t on
the data presented in Figure 2-15 to obtain I(y). The derived pro�les agreed well for
this 1.3 cm ion beam pro�le. Because of relative insensitivity to background subtrac-
tion, inherent in the optical imaging, the e-beam diagnostic has an advantage over
the direct measurement of the beam pro�le with the scintillator. This is important
when measuring beam halos.

2.5 Numerical Tools

In the HIF-VNL we have available a suite of computer codes to design the experiments,
model details of their performance, and to analyze the data. These codes, which range
from zero-dimensional systems codes to 3-D particle-in-cell simulations, are able to
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Figure 2-16: A comparison of the integrated ion beam density pro�le measurements.
The lines with hollow and solid circles show, respectively, the ion beam pro�les mea-
sured destructively by directly placing a ceramic scintillator in front of the ion beam,
and nondestructively using the e-beam diagnostic system.

model all parts of an accelerator from source to target at an appropriate level of
detail (Figure 2-17). In the accelerator, the areas studied include beam formation
(ion source), beam matching, emittance growth, lattice-error tolerances, beam-halo
formation, and bunch compression. Beam transport in the reactor chamber is also
being examined to determine the best ways to neutralize the beam and to minimize
the focal spot. In this thesis, the main computer codes used to run the numerical
simulations are the (r − z and x− y) particle-trajectory code EGUN for gun design,
and the 3-D particle-in-cell code WARP. For the neutralized transport section, WARP
is used by neglecting the plasma dynamics and assuming an e�ective space-charge
neutralization for the ion beam. The 3-D electromagnetic code LSP is used for a
self-consistent simulation including the ion beam and the neutralized plasma. For
data analysis, we have a series of dedicated data reduction programs written in the
computer language PYTHON. For image analysis the program of choice is ImageJ.
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Figure 2-17: Codes for beam dynamics simulations.
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2.5.1 EGUN

The (r − z and x − y) particle-trajectory code EGUN [51] computes trajectories
of charged particles in electrostatic and magnetostatic focusing systems including
the e�ects of space charge and self-magnetic �elds. Starting options include Child's
Law conditions on emitters of various shapes, user-speci�ed conditions input for each
ray, and a combination of Child's Law conditions and user speci�cations. Either
rectangular or cylindrically symmetric geometry may be used. Magnetic �elds may
be speci�ed using an arbitrary con�guration of coils, or the output of a magnet
program, such as Poisson, or by an externally calculated array of the axial �elds.
The program �rst solves Laplace's equation. Next, the �rst iteration of particle
trajectories is started using one of four starting options. On the �rst iteration cycle,
space charge forces are calculated from the assumption of paraxial �ow. As the rays
are traced, space charge is computed and stored. After all the particle trajectories
have been calculated, the program begins the second cycle by solving the Poisson
equation with the space charge from the �rst iteration. Subsequent iteration cycles
follow this pattern. The Poisson equation is solved by an alternate column relaxation
technique known as the semi-iterative Chebyshev method. A fourth-order Runge-
Kutta method is used to solve the relativistic di�erential equations of the trajectory
calculations.

2.5.2 WARP

WARP [13] is a multidimensional (2-D and 3-D), electrostatic intense beam simulation
program developed and used at the Heavy Ion Fusion Virtual National Laboratory.
It allows �exible and detailed multi-dimensional modeling of high current beams in a
wide range of systems, including bent beam lines using a "warped" coordinate system
(from which the code derives its name). It is being designed and optimized for heavy
ion fusion accelerator physics studies. At present it can model the beam dynamics
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in a 3-D description, an axisymmetric (r, z) description, a transverse slice (x, y) de-
scription, a simple envelope model used primarily to obtain a well-matched initial
state, and envelope/�uid models used for scoping and design. The discrete-particle
models in WARP combine the particle-in-cell (PIC) technique commonly used for
plasma modeling with a description of the "lattice" of accelerator elements. WARP
is a time-dependent particle code � the particles are advanced in time and the self
and applied �elds are applied directly to update the particles' momenta. The calcu-
lation can follow the time-dependent evolution of beams, or can e�ciently be used to
study steady-state beam behavior in 3-D or 2-D (r, z) by solving for the self-consistent
�eld only infrequently or by using an iterative method. The transverse-slice model
is s-dependent, and is e�ectively a steady-�ow model. The beam can be initially
generated from one of several general distributions or from �rst principles via space-
charge-limited injection from an emitting surface. The self-consistent �eld is assumed
electrostatic � Poisson's equation is solved on a Cartesian mesh that moves with
the beam. In a bend, the solution is altered to include the curvature of the coor-
dinates. Complex conductor geometry can be included in the �eld solution using a
subgrid-scale, or cut-cell, boundary algorithm to a�ord a realistic description of the
geometry while minimizing the required grid resolution. Regions where the physics or
the geometry requires a small spatial scale can be resolved as �nely as needed using
Adaptive Mesh Re�nement, implemented in WARP. In order to accommodate space-
charge-limited injection with very fast rise time, a specialized re�nement patch is
implemented. Near the emitting surface, the self-�elds are calculated along indepen-
dent one-dimensional lines normal to the surface, with increasing re�nement towards
the surface. Figure 2-18 shows a self consistent calculation of the ESQ Injector using
WARP.

77



Figure 2-18: WARP simulation of the ESQ Injector.

2.5.3 LSP

LSP [15] is a 3-D (as well as 2-D and 1-D) electromagnetic code for large-scale elec-
tromagnetic plasma simulations using the particle-in-cell method. Both explicit and
direct-implicit electromagnetic �eld and particle-advancing algorithms are available.
Algorithms are also implemented for �eld emission, transmission-line boundaries, di-
electrics, dispersive magnetic materials, secondary electron generation, multiple scat-
tering, ionization of neutrals, surface heating, and desorption of neutrals from sur-
faces. A hybrid �uid model for electrons has been implemented, allowing electrons in
dense plasmas to be modeled with a kinetic or �uid treatment as appropriate.

2.5.4 ImageJ

ImageJ is a public domain Java image processing program. It runs, either as an
online applet or as a downloadable application, on any computer with a Java virtual
machine. It can display, edit, analyze, process, save and print 8-bit, 16-bit and 32-
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bit images. It can read many image formats including TIFF, GIF, JPEG, BMP,
DICOM, FITS and "raw". It supports "stacks", a series of images that share a single
window. It is multithreaded, so time-consuming operations such as image �le reading
can be performed in parallel with other operations. It can calculate area and pixel
value statistics of user-de�ned selections. It can measure distances and angles. It can
create density histograms and line pro�le plots. It supports standard image processing
functions such as contrast manipulation, sharpening, smoothing, edge detection and
median �ltering. It does geometric transformations such as scaling, rotation and
�ips. Image can be zoomed up and down. All analysis and processing functions are
available at any magni�cation factor. The program supports any number of windows
(images) simultaneously, limited only by available memory. Spatial calibration is
available to provide real world dimensional measurements in units such as millimeters.
Density or gray scale calibration is also available. ImageJ is designed with an open
architecture that provides extensibility via Java plugins. Custom acquisition, analysis
and processing plugins can be developed using ImageJ's built in editor and Java
compiler. User-written plugins make it possible to solve almost any image processing
or analysis problem.
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Chapter 3

Ion Source

3.1 Calculation of the Pierce Electrode Shape for

Aberration-free Sheet Particle Guns

In order to explore aberrations in magnetic transport and the e�ects of incomplete
neutralization, an ion source with a variable perveance and a very low emittance
has been designed and tested. The source characteristics are summarized in Section
3.3. Figure 3-1 shows the schematic of a typical ion diode and Figure 3-2 shows a
photograph of the emitter and Pierce (focusing) electrode assembly.

The search for aberration-free diode geometries for the extraction of high-perveance

Figure 3-1: Schematic of a typical ion diode.
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Figure 3-2: Photograph of the emitter and Pierce (focusing) electrode assembly.

beams has been a topic of research for the past 60 years, ever since Pierce [52] found an
analytic solution for sheet beams. Pierce's solution can only be used in guns that do
not have an aperture, or that have a high transparency mesh placed at the extracting
electrode aperture to let the beam out and still de�ne an equipotential. Furthermore
his mathematical method, based on analytic functions of a complex variable to solve
for the �eld potential outside the beam region, cannot be used in general geometries.
We will describe a procedure to �nd aberration-free gun geometries for non-relativistic
beam diodes in the framework of the cold-�uid description. Discussions are made re-
garding appropriate boundary conditions, and analytic and numerical methods are
introduced in order to solve such a complex diode problem.

3.1.1 Cold �uid description of non-relativistic beams

It is plausible to assume that the beam �ow is governed by the cold-�uid equations,
because the thermal energy of the particles (i.e., the temperature) is negligibly small
compared with the energy associated with the mean �ow of the beam in a well-
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designed particle gun. In the IS units, the cold-�uid equilibrium equations are:

(V · ∇)γV =
q

m
[E0 + Es + V×(B0 + Bs)], (3.1)

∇ · (nV) = 0, (3.2)

∇ · (E0 + Es) =
q

ε0

n, (3.3)

∇× (E0 + Es) = 0, (3.4)

∇× (B0 + Bs) = µ0qnV, (3.5)

∇ · (B0 + Bs) = 0 (3.6)

where q and m are the ion charge and rest mass, respectively, n(x) is the ion density
and V(x) is the ion �ow velocity,

γ(x) =

[
1− V 2(x)

c2

]−1/2

(3.7)

is the relativistic mass factor, which is kept to be non-unity in the present formula-
tion applicable for both electron and ion diodes; c is the speed of light in vacuum,
E0(x) and B0(x) are the externally applied electric and magnetic �elds, respectively,
Es(x)and Bs(x) are the self-electric and self-magnetic �elds of the ion beam, respec-
tively.

There are four variables, namely, n(x), V(x), Es(x), and Bs(x), that must be
solved with appropriate boundary conditions discussed below.

For future references, introducing the electrostatic potential φ(x) and magneto-
static vector potential A(x) de�ned by

E(x) = E0(x) + Es(x) = −∇φ(x), (3.8)
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B(x) = B0(x) + Bs(x) = ∇×A(x), (3.9)

and the current vector potential χ(x)de�ned by

J(x) = qn(x)V (x) = ∇× χ(x), (3.10)

we express the cold-�uid equilibrium equations as

(V · ∇)γV =
q

m
[E + V ×B], (3.11)

∇2φ = − q

ε0

n, (3.12)

∇2A = −µ0qnV, (3.13)

where A(x) has been assumed to satisfy the gauge condition

∇·A(x) = 0. (3.14)

Evidently, the cold-�uid equilibrium equations are highly nonlinear.

For a non-relativistic diode, the applied and self-magnetic �elds may be negligibly
small. Under the approximations

γ(x) ∼= 1, (3.15)

B(x) = B0(x) + Bs(x) = 0, (3.16)

we only need to solve Eqs. (3.1)�(3.3). Assuming the laminar �ow condition

∇×V(x) = 0 (3.17)
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we �nd from Eq. (3.1) that

∇
[
1

2
mV 2(x) + qφ(x)

]
= 0 (3.18)

or
1

2
mV 2(x) + qφ(x) = const = 0, (3.19)

where we have set the constant to be zero so that for a space-charge limited emission
gun (zero �ow velocity emission) the electrostatic potential is zero at the emitter.
Since J(x) = qn(x)V (x), then

n(x) =
|J(x)|

|q| |V(x)|
=

1

|q|

√
m

2

J(x)√
−qφ(x)

, (3.20)

where J(x) is the magnitude of the current density vector J(x).
Therefore, the entire non-relativistic diode problem is reduced to the following

two equations
∇·J(x) = 0, (3.21)

∇2φ =
1

ε0

√
m

2q

J(x)√
φ(x)

, (3.22)

which must be solved subject to appropriate boundary conditions. Notice the change
of notation in Eq. (3.22) so that these equations describe the �ow of negative particles
of charge −q < 0, and that the potential is non-negative.

3.1.2 Prescription to Find Aberration-Free Gun Geometries

Equations (3.21) and (3.22) form the basis to �nd the �eld potential (φ) con�gurations
inside the beam region by prescribing a divergence-free current density �ow (J) and
de�ning beam boundaries in such a way as to have self-consistent boundary conditions
for the electrostatic potential. The potential inside the beam is a solution of the

85



following system
∇2φ =

1

ε0

√
m

2q

J(x)√
φ(x)

, (3.23)

ϕ |emitter= 0, (3.24)

ϕ |collector= φ0, (3.25)
∂φ

∂n
|beam−boundary= f(x), (3.26)

where f(x) must be chosen self consistently.
Once φ is found inside the beam region we solve for the potential ψ outside

the beam region by solving Laplace's equation and matching the inside and outside

solutions for the potential and the normal derivative at the beam boundary. This is a
Cauchy problem for Laplace equation,

∇2ψ(x) = 0, (3.27)

ψbeam−boundary = φbeam−boundary, (3.28)
∂ψ

∂n
|beam−boundary= f(x). (3.29)

For the beam interior, the simplest choice for an aberration-free beam �ow is to
set J = Jez, where J = constant, i.e., particles follow straight line trajectories from
the emitter to the collector. Figure 3-3 describes a generic system for a constant
current density �ow.

The boundary conditions appropriate for this type of �ow are described in Figure
3-4. The emitter and collector are equipotential surfaces and the �eld must be parallel
to the beam boundaries. In this situation f(x) = 0 on the beam boundary, i.e., the
electric �eld normal to the �eld boundary vanishes.

The boundary conditions to determine the equipotential extensions from the emit-
ter and from the collector are described in Figure 3-5. Notice that the boundary
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Figure 3-3: Generic Gun System for Constant Current Density Flow.

Figure 3-4: Boundary conditions for Generic Gun System for Constant Current Den-
sity Flow.
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Figure 3-5: Boundary conditions for exterior solution of Generic Gun System for
Constant Current Density Flow

conditions are speci�ed only for the beam boundary. The potential ψ does not have
to match the potential φ anywhere else.

More complex �ows, like converging axisymmetric �ows, can be described by an
appropriate choice of the divergence-free current density vector J(r, z). For example
the uniform beam �ow between concentric spheres is described by

J(r, z) =
C

(r2 + z2)3/2
(rer + zez) (3.30)

where C is a constant. The choice

J(r, z) =
C

r(r2 + z2)
(rer + zez) (3.31)

with C being a constant, will generate a non-uniform �ow.
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3.1.3 Sheet beams and Pierce diode solution for 2-D �ow

For constant current density �ow in slab geometry, where the beam is �owing along
the z-direction and is in�nite along the y-direction, we have from Eq. (3.23),

∇2φ(x, z) =
1

ε0

√
m

2q

J√
φ(x, z)

, (3.32)

where
J(x, z) = −Jez (3.33)

and J > 0 is an arbitrary constant. In order to �x the value of J , an additional
boundary condition must be imposed on φ. We choose the space-charge limited
emission condition φ′(0) = 0.

3.1.3.1 Electrostatic potential solution inside the beam.

Equation (3.32) is the equation for the potential inside the beam. Since there are no
forces along the x-direction, then

φ′′(z) =
1

ε0

√
m

2q

J√
φ(z)

, (3.34)

φ(0) = 0, (3.35)

φ(d) = φ0, (3.36)

φ′(0) = 0, (3.37)

where d is the distance from the emitter to the collector. The boundary conditions
on the beam boundary are trivially satis�ed since the potential does not depend on
the x-direction.
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The solution to Eq. (3.34) is

φ(z) = φ0

(z
d

)4/3

. (3.38)

The current density J is related to φ0 and d by the Child-Langmuir Law

J =
4ε0

9

√
2q

m

φ
3/2
0

d2
. (3.39)

3.1.3.2 Electrostatic potential solution outside the beam.

Outside the beam the electrostatic potential obeys Laplace's equation. In slab geom-
etry the upper and lower regions bounded by the equipotentials from the emitter and
the collector are independent and the solution in one region can be obtained from
the other by re�ection. For simplicity let's de�ne as x = 0 the position of the upper
beam boundary. Then we have to solve

∂2ψ

∂x2
+
∂2ψ

∂z2
= 0, (3.40)

ψbeam−boundary = φ0

(z
d

)4/3

, (3.41)

∂ψ

∂n
|beam−boundary= 0. (3.42)

It is straightforward to obtain a solution to Eq. (3.40) by working in the complex
plane de�ned by the variable w = z + ix, which gives

ψ(x, z) = φ0<
(
z + ix

d

)4/3

. (3.43)

Since the right hand side of Eq. (3.43) is the real part of an analytic function,
it is a solution of Laplace's equation; also since it is symmetric about x = 0, then
∂ψ
∂n

(x = 0, z) = 0. Furthermore ψ(x = 0, z) = φ0

(
z
d

)4/3.
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Figure 3-6: Equipotentials of ψ.

In the polar coordinates z = ρ cos θ, x = ρ sin θ, we have

ψ(ρ, θ) = φ0

(ρ
d

)4/3

cos(4θ/3). (3.44)

Figure 3-6 shows the equipotentials of ψ. The only region relevant for our analysis
is the region bounded by the equipotential that start from the emitter, the equipoten-
tial that start from the collector , the x = 0 line and the boundary at in�nity. Figure
3-7 shows the gun design based on this solution obtained by Pierce in 1940 [52].

Notice that in polar coordinates, the equation for the equipotential that starts at
the emitter is given by

θ = 3π/8, (3.45)
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Figure 3-7: Pierce solution for uniform rectilinear space-charge �ow in slab geometry.

and the equation of the equipotential that starts at the collector is

(ρ/d)4/3 cos(4θ/3) = 1, (3.46)

as illustrated in Figure 3-7.

3.2 Current transient elimination in one-dimensional

diodes

Section 3.1, which describes a procedure to obtain an aberration-free ion beam di-
doe design, assumes a time-independent steady-state space-charge-dominated (Child-
Langmuir) �ow. In practical situations, during beam turn-on the voltage at the source
is increased from zero to start extracting the beam; it stays constant for a time com-
parable to the desired pulse length, and is decreased to zero to turn o� the emission.
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The transient behavior is dominated by the extraction pulser voltage time pro�le and
the transit time of the ions inside the diode.

The transient longitudinal dynamics, i.e., the relationship between the time-
dependent voltage on the "extracting electrode" and the current and energy at the
end of the diode is simulated by running particle-in-cell codes like WARP3D in a
time-dependent mode.

Figure 3-8 shows the experimental waveforms, from the 2 MeV ESQ Injector at
LBNL, of the current and energy transient oscillations, which decay away within a few
multiples of the particle transit time across the gun, for the case of a sudden turn-on
of the extracting voltage. The elimination of these oscillations is very important for
space-charge-dominated beams since such oscillations will lead to envelope variations
along the beam which will reduce the dynamic aperture of the accelerator.

In this section we discuss the generalization, to any complex geometry, of a method
proposed by Lampel and Tiefenback [53] to eliminate transient oscillations in a one-
dimensional planar diode. This generalization has been implementated in WARP3D.

3.2.1 Current transient elimination in a one-dimensional pla-

nar diode

In a one-dimensional planar diode it is possible to �nd an analytic solution for the
extracting voltage waveform that will eliminate the current and energy transient
oscillations.

Figure 3-9 shows a schematic diagram of a planar diode. Let φ(x) be the potential
corresponding to the steady-state space-charge-dominated �ow:

φ(x) = −V (x/L)4/3. (3.47)
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Figure 3-8: Current and energy transient oscillations for the case of a sudden turn-on
of the extracting voltage.

94



Figure 3-9: Schematic diagram of a planar diode.
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3.2.1.1 Correction of beam head oscillations

To calculate the required V(t) we use the following procedure starting from the steady
state solution [53].

• Divide the diode into two regions on either side of the plane at x = ξ (Figure
3-10).

• Eliminate the charge for x > ξ.

• Keep �eld solution for x < ξ unchanged by requiring the �eld at x = ξ to be
the same as in the steady-state space-charge-dominated �ow.

• Find the potential at the collector to satisfy Laplace's equation for x > ξ, and
continuity of potential and �eld at x = ξ. The result is

ψc(ξ) = −V [
4

3
(ξ/L)1/3 − 1

3
(ξ/L)4/3]. (3.48)

• Express the parameter ξ in terms of the time at which the leading particles in
the beam are at ξ. From energy conservation we obtain

1

2
m(dξ/dt)2 = qV (ξ/L)4/3. (3.49)

By integrating the preceding equation we obtain

(ξ/L) = (t/τ)3, (3.50)

where the transit time factor is de�ned as

τ = 3
√
mL2/2qV . (3.51)
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Figure 3-10: Beam head uniform current �ow.

Since V (t) = ψc(ξ), the beam head oscillations will be corrected by applying the
following voltage waveform at the collector

V (t) = −V [
4

3
(t/τ)− 1

3
(t/τ)4] for t < τ, (3.52)

V (t) = −V for t ≥ τ, (3.53)

which is illustrated in Figure 3-15.

3.2.1.2 Correction of beam tail oscillations

The procedure can be extended to eliminate beam tail oscillations by dividing the
diode into two regions on either side of the plane at x = ξ, eliminating the charge for
x < ξ (Figure 3-11), keeping the �eld solution for x > ξ unchanged by requiring the
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Figure 3-11: Beam tail uniform current �ow.

�eld at x = ξ to be the same as in the steady-state space-charge-dominated �ow, and
changing the potential at the collector to satisfy Laplace's equation for x < ξ, and
continuity of potential and �eld at x = ξ. The solution in terms of the parameter ξ is

ψc(ξ) = −V [1 +
1

3
(ξ/L)4/3]. (3.54)

Setting the time origin as the time when the emission stops, the beam tail oscil-
lations will be corrected by applying the following voltage waveform at the collector:

V (t) = −V [1 +
1

3
(t/τ)4] for t < τ. (3.55)
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Figure 3-12: Schematic diagram of a concentric-spheres diode.

3.2.2 Current transient elimination between concentric spheres

For the Child-Langmuir �ow between concentric spheres (or between in�nite coaxial
cylinders), the procedure described above provides a set of ordinary di�erential equa-
tions whereby a solution for the extracting voltage waveform can be obtained that
will eliminate the current and energy transient oscillations.

Figure 3-12 shows a schematic diagram of a diode formed by two concentric
spheres. Let φ(r) be the potential corresponding to the steady-state space-charge-
dominated �ow. The Poisson equation is

(1/r2)(d/dr)(r2dφ/dr) = −ρ/ε0. (3.56)

Since
1

2
mv2 = −qφ and ρ = I/4πr2v, (3.57)
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we obtain
(d/dr)(r2dφ/dr) = −(I/4πε0)

√
−m/2qφ, (3.58)

where v and I are the beam velocity and current respectively.
To correct for the beam head transients we will follow the same procedure de-

scribed in Section 3.2.1, starting from the steady-state Child-Langmuir �ow solution.

• Divide the diode into two regions on either side of the sphere at r = ξ (Figure
3-13).

• Eliminate the charge for r < ξ.

• Keep �eld solution for r > ξ unchanged by requiring the �eld at r = ξ to be
the same as in the steady-state space-charge-dominated �ow.

• Find the potential at the collector to satisfy Laplace's equation for r < ξ, and
continuity of potential and �eld at r = ξ. The result is

ψc(ξ) = ξ2(1/ξ − 1/Rc)φ
′(ξ) + φ(ξ). (3.59)

• Express the parameter ξ in terms of the time at which the leading particles in
the beam are at ξ. F1rom energy conservation we obtain (inward �ow)

1

2
m(dξ/dt)2 = −qφ. (3.60)

Since we do not have a closed form solution for φ(r), V (t) will be obtained by
integrating numerically Poisson's and the velocity equations to obtain φ(ξ) and t(ξ).
The initial conditions are

φ(Rs) = 0, (3.61)

φ′(Rs) = 0, (3.62)
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Figure 3-13: Beam head uniform current �ow.

τ(Rs) = 0. (3.63)

Since V (t) = φc(ξ), we obtain the required voltage waveform by substituting these
solutions into the expression for φc(ξ).

A similar analysis, following a di�erent approach, has been reported by Kadish
et al. [54]. Particle codes written to study the beam dynamics of one-dimensional
diodes have been used to check the validity of the procedure [55-57].

3.2.3 Current transient elimination in general geometries

The essential feature of the described procedure is to force the �eld solution in the
region occupied by the beam, at any given time, to be the same as the steady state
solution in the same region. This can be done in one-dimensional structures by
prescribing an extracting voltage waveform V (t) since a condition at a single point
(the collector) is enough to ful�ll the requirement.
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Figure 3-14: Current pro�le for the 2 MeV injector using the numerically calculated
voltage wave form.

For a two- or three-dimensional gun, the procedure requires the prescription of
extracting voltage waveforms along a curve or on a surface, respectively. Since this
requirement is not attainable we can compensate only partially the transient oscil-
lations. For an axisymmetric structure, for example, one may use as an e�ective
potential the average energy of the particles at a given cross-section and follow the
same procedure as that described for one-dimensional structures.

We have implemented the general procedure to eliminate transient oscillations in
the three-dimensional particle-in-cell code WARP3D.

We have also implemented it in two injectors, namely, the earlier 2 MeV Injec-
tor [58] and the present NTX diode. Figure 3-14 shows the current at the end of the
cylindrically symmetric 2 MeV injector using the numerically calculated voltage wave-
form V (t) applied on the extracting electrode. The resulting current pro�le exhibits
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Figure 3-15: Voltage waveform as calculated and used in WARP3D and the corre-
sponding ideal waveforms for the planar, and spherical-equivalent diodes.

a decrease in the beam head transient oscillation. Since the 2 MeV heavy ion fusion
injector gun is poorly represented by either a planar diode or a two-concentric-sphere
diode, attempts to use the voltage waveforms V (t) calculated for such geometries
resulted in a rather small decrease in the transient oscillation. Figure 3-15 compares
the waveforms obtained for the planar and spherical diodes.

An attempt to elliminate transient oscillations in the NTX diode will be discussed
in Sec. 3.3.3..
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3.3 The NTX Variable-perveance Heavy Ion Source

3.3.1 Design and performance of a high brightness ion source

The NTX experiments require a beam current that can be varied by one order of
magnitude, up to 75 mA. This variability is needed both to investigate the e�ects of
aberrations in �nal focus and to test the sensitivity of plasma neutralization to beam
current. In addition, neutralization studies also require a high source brightness,
a quantity which is proportional to the beam current divided by the square of its
emittance [33]. The use of aperturing to vary the perveance simultaneously generates
high-brightness beams by removing the edge of the beam after it exits the diode.
Beam scraping, however, produces secondary electrons that must be controlled. Stray
electrons can introduce nonlinear space-charge forces, which can lead to an increase of
the transverse emittance [59] and, in extreme cases, to beam disruption. In NTX, the
secondary electrons are controlled by placing electron traps near the beam scraper.
Each of these electron traps has a su�ciently large negative potential to con�ne the
electrons even in the presence of the positive ion-beam self �eld.

The EGUN [51] calculation in Figure 3-16 shows potential contours and steady-
state ion trajectories for a nominal case of the ion gun, including the diode and the
beam aperture and electron-trapping device. The 75-mA K+ beam is produced on
the surface of a 2.54-cm diameter alumino-silicate source [46] heated to 1060 oC, and
it exits the 12-cm diode gap with an energy of 300�400 keV. A beam aperture plate,
with holes of variable diameter, is placed about 8 cm beyond the diode exit plate,
sandwiched between two metal rings of 5-cm length and 6.2-cm inner diameter. The
nominal 3 kV negative bias on these rings provides adequate trapping of the free
electrons produced by ions striking the aperture. Figure 3-17 shows a photograph of
the NTX beam scraper system.
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Figure 3-16: EGUN simulation of the NTX diode and beam aperture system.

Figure 3-17: Photograph of the NTX beam scraper system.
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We �rst characterize the diode without an aperture plate. At 400 kV, the peak
current is 77 mA, which agrees with the 73-mA EGUN calculation within the ±5%
uncertainty of the measurement. The measured current follows the familiar Child-
Langmuir scaling [33] as the voltage is varied by a factor of three. The measured
beam pro�le and emittance show small deviations from uniformity due to known
imperfections in the beam optics. When an aperture of 2-cm diameter is inserted
and the nominal electron-trap voltage is applied, the measured current is 55% of
the total, again consistent with the EGUN prediction. The density pro�le of the
apertured beam is found to be much more uniform, and the emittance in each of
the transverse directions is lower by a factor of two, producing overall a doubling of
brightness.

Figure 3-18(a) shows that a smooth uniform bright beam pro�le is generated by
increasing source temperature, smoothing the source surface and positive biasing of
the aperture. As the bias potential on the aperture is reduced, electron neutralization
leads to enhanced current density on-axis and a highly non-uniform beam pro�le has
been observed (Section 3.3.4).

The line-integrated beam pro�le is parabolic, indicative of a uniform beam pro�le,
and the normalized edge emittance is measured to be 0.05 π-mm-mr, which is less
than a factor of 2 times of source-temperature-imposed value.

When the ion beam is apertured and a negative bias voltage of 3�6 kV is used
to capture electrons, the measured beam pro�le is quite uniform. The slit-integrated
density pro�le shown in Figure 3-19 for a 25-mA beam deviates from the correspond-
ing EGUN calculation by a maximum of 2%, with the average deviation being much
smaller. The measured emittance is less than a factor of two above the value ex-
pected from the source temperature alone (ε ≈ 7.5π-mm-mr). The only signi�cant
qualitative di�erence between the experimental phase-space plots in Figure 3-19 and
the corresponding computer-generated plots is a slight S-curve deviation in x′ result-
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Figure 3-18: Slit integrated NTX ion beam pro�le. Pro�le a) is obtained by increasing
source temperature, smoothing source surface and biasing aperture.

Figure 3-19: Measured slit integrated density pro�le and (x, x′) phase space of a
high-brightness apertured beam (300 kV, 25mA, 2-cm aperture). The corresponding
EGUN calculations are shown to the right.
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ing from a third-order (�spherical�) aberration in the NTX focusing system. The K+

beam in Figure 3-19, with energy of 300 keV and ε ≈ 12.5π-mm-mr, is used for the
neutralized-transport experiments reported here.

3.3.2 Current-voltage relation

The K+ beam is produced within the source chamber by a standard hot-plate [46]
of a 2.54 cm diameter alumino-silicate source across a diode with a 12 cm gap. The
pulsed power is provided by a Marx generator and crowbar switch that were used in
the Multiple Beam Test Experiment (MBE-4) [42]. This Marx generator produces a
pulse with 0.5�1 µs rise time and is crowbared to produce a 5-µs ��at-top�. The un-
apertured beam current follows the Child-Langmuir Law, reaching 80 mA at 400 keV.
Figure 3-20 shows the Marx voltage waveform, the extracted ion current waveform
and the con�rmation of the Child-Langmuir law. With a 2 cm diameter aperture,
the current is reduced by approximately one half; a 1 cm diameter aperture reduces
the current to 1/4 of the 2 cm aperture value. Most of the detailed experiments have
been performed with the 2 cm aperture, where the current is 25 mA at 300 keV.

3.3.3 Current transient in the NTX gun

As described in Section 3.3.2, the NTX diode voltage waveform is provided by a Marx
generator and a crowbar switch. The Marx generator produces a rise time between
0.5 and 1 µs and is crowbared to produce a 5-µs ��at-top�. The oscilloscope waveform
in Figure 3-20 (top-left) shows the Marx voltage pro�le wit a rise time ∼600 ns. The
crowbar limits the pulse to a 5-µs ��at-top�, and produces a decay time ∼500 ns.

Since the transit time of the ions in the diode is ∼300 ns, the elimination of the
beam head current transient using the prescription described in Section 3.2 is not
possible due to the limitations of the Marx generator. A voltage waveform rise time
longer than the ion transit time in the diode produces a smooth rise time of the current
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Figure 3-20: Measured voltage and current waveforms and veri�cation of the Child-
Langmuir law

at the end of the diode as shown in Figure 3-20 (bottom-left). A modi�cation of the
Marx generator to produce a rise time ∼300 ns should produce a sharper current rise
time.

In order to correct the beam tail transient e�ects, a mechanism to stop the emission
of ions in the presence of diode voltage is required. There is an ongoing program at the
HIFS-VNL to control the ion emission from an alumino-silicate emitter by controlling
the emitter temperature with a laser beam; this mechanism is based on the fact that
the emission from the alumino-silicate emitter is negligible below temperatures .800
oC.

3.3.4 Control of secondary electrons

The K+ beam is produced by a standard hot-plate source [46], and the perveance
and emittance are controlled by passing the beam through a metal aperture after the
diode. Negatively biased rings on either side are used to capture electrons liberated by

109



ions striking the aperture plate. The change in transverse emittance that results from
aperturing primarily a�ects the focal-spot size. For the space-charge-dominated NTX
beam, WARP simulations show that dynamics in the �nal-focus lattice is insensitive
to the beam emittance.

A smooth uniform bright beam pro�le is generated by increasing the source tem-
perature, smoothing the source surface and aperturing the beam [8]. The use of an
aperture to vary the perveance also generates a high-brightness beam by removing
the edge of the beam after it exits the diode. Beam scraping, however, produces
secondary electrons that are controlled by an electron trap.

The control of electrons is very important in this experiment, as stray electrons
can introduce nonlinear space charge forces, which could lead to increase of beam
emittance, and disruption of beam propagation. Our technique is to con�ne the
electrons generated by the perturbing process to its place of birth by adjacent electron
traps. These electron traps have negative potentials su�ciently large to con�ne the
electrons even in the presence of the positive potential (a couple of kilovolts in NTX)
from the self-�eld of the ion beam. Figure 3-16 shows a sketch of the ion gun and
the beam scraper system, as designed using the EGUN code, and Figure 3-17 is a
photograph of the aperture and electron trap located at the exit of the NTX diode.
The trap consists of two metal tubes, each of 5 cm length, and 6.2 cm inner diameter
with an aperture plate in between. The upstream and downstream tubes are located
0.8 cm from the aperture plate. A nominal negative 3 kV potential is provided on
each of the metal tubes, providing adequate electron trapping in the presence of the
ion beam. Another electron trap, 7.5 cm in radius, is located at the downstream end
of the beamline, 10.16 cm downstream from the last quadrupole magnet. A nominal
negative 7 KV voltage is used across this second trap to make it e�ective for collection
of stray electrons.
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Figure 3-21: Electron e�ect on density

We run a series of tests in order to prove the e�ectiveness of the NTX beam
scraper system. A Faraday cup is used to measure the total beam current exiting the
aperture plate, and a slit/ slit-cup arrangement to measure the line-integrated beam
pro�le (with slit cup only) and emittance (with slit and slit cup). The Faraday cup
and the slit cup each consists of a collector and a guard ring/grid with bias voltages
that are controlled to collect beam ions only. In addition, we also monitor currents
�owing through the aperture plate and each of the two electron traps.

To understand the e�ect of electrons generated by the beam on the aperture
and the diagnostic plates, we vary the bias voltage on the electron trap. The total
current measured in the Faraday cup increases as the magnitude of the negative bias
is reduced. We also measure the change in beam pro�le as the bias voltage is varied.
We notice that as the bias voltage moves towards zero, the on-axis current is greatly
enhanced. Associated with the on-axis enhancement is a slight reduction in the overall
radial dimension of the beam as shown in Figure 3-21.
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Figure 3-22: EGUN simulation of ions and electrons in the NTX diode and the scraper
system.

These observations are consistent with a picture where electrons are trapped
within the beam as the electron trap voltage is reduced. To quantitatively evalu-
ate these e�ects, we have performed a series of simulations; using PIC codes as well
as ray-tracing codes. The predicted behaviour of ions and electrons are shown in
Figure 3-22. With the qualitative agreement of code and experiment, the following
picture emerges: when the negative bias on the electron trap is su�ciently high, the
electrons born on the aperture plate and the diagnostic plates are locally trapped.
Their e�ect on the ion beam is minimal. However, as the negative bias is reduced, the
electrons are �nally able to break through the electrostatic barrier, and will accumu-
late around the beam axis (the bottom of the potential well). The region of electron
population increases with reducing bias voltage. These on-axis electrons cancel the
space-charge e�ect of the ions, causing the overall ion beam envelope to decrease,
and the on-axis ion density to increase. The total current through the aperture also
increases as a result.
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Chapter 4

Matching and Transport in a

Magnetic Quadrupole Focusing

System

4.1 Final Focus Physics and Scaling Relations

The relevance of NTX to the fusion driver is derived from the observation that the
key scaling parameter is perveance, de�ned in SI units by

Q =
1

4πε0

2ZeIb
miv3

i

, (4.1)

where Ib is the beam current, and Z,mi, and vi are respectively the charge state,
mass, and velocity of the beam ions.

The beam dynamics of a low current, low energy beam, as in NTX, is identical
to a high current, high energy beam in a fusion driver, as long as the perveance is
the same, and the focusing �elds are scaled appropriately. In the NTX experiment
the injector is designed to generate a very high-brightness, space-charge-dominated
potassium beam where the perveance is varied by means of a beam aperturing system
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immediately down stream of the ion source and upstream of the �rst quadrupole as
discussed in Chapter 3. By changing the aperture size, we vary the beam current at
a �xed energy.

A simple theoretical model for neutralized drift provides us the framework in
which we analyze more detailed experiments and simulations. For a beam which is
nearly ballistic, the focal length f is given by

f =
r0
θ
, (4.2)

where r0 is the beam radius and θ is the angle of convergence at the entrance of the
drift section (i.e., at the exit of the quadrupole lattice). The �nal spot size rs at the
focal point is given by

rs =
ε

θ
, (4.3)

where ε is the unnormalized emittance of the beam at target. The �rst question, ad-
dressed with a combination of simulations and experiment, is whether we can achieve
the focal spot at target, more speci�cally, whether we can control the beam in the
quadrupole lattice to produce any desired beam size r0 and convergence angle θ at
the entrance to the drift section. As described below, beam control is obtained by
changing the magnetic strength of 4 quadrupoles. We have varied the quadrupoles to
obtain various values of θ (5 mr, 10 mr, 15 mr and 20 mr) for a given beam energy
and current. The agreement between theory and experiment is excellent. We have
also varied individual quadrupole strengths, and demonstrated that the beam shape
changes in a predictable manner. In addition, the beam energy (and current) is var-
ied, and again, the beam shape varied in a predictable manner. Finally, the perveance
is varied, and good agreement between simulations and experiments is obtained.

The ultimate objective for the fusion application is to deliver the entire pulse onto
the target with the same small spot. This is a nontrivial task because the beam
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energy and current from head to tail is not uniform. The di�erent slices of the beam
may have somewhat di�erent beam envelopes through the magnetic lattice, leading
to di�erent beam size and convergence angle, and therefore variable focal length from
head to tail. We need to know the sensitivity of the beam optics to small changes in
beam energy. To evaluate this e�ect, we have measured the beam size as the energy is
varied. We have observed that energy variations of 1% lead to a reduction of current
density by 50%. This experimental result is consistent with theory. We have also
measured directly the spot size variation from head to tail and signi�cant changes
have been observed. The voltage waveform shows a variation of ∼1%, and this energy
variation is enough to account for the head-to-tail variation in spot size. For future
work, we need to study the energy sensitivity for other lattices (e.g., a 6-quad lattice)
to determine if the energy sensitivity could be reduced. Also, time-dependent focusing
may be used to correct for the head-to-tail variations.

For a beam with a uniform transverse current density, the description of the beam
transverse size along the channel is given to �rst order by the envelope equations of
Kapchinskij and Vladimirskij [60],

d2a

dz2
= Ka+

2Q

a+ b
+
ε2
x

a3
, (4.4)

d2b

dz2
= −Kb+

2Q

a+ b
+
ε2
y

b3
, (4.5)

where a and b are the transverse edge dimensions of the beam, z is the propagation
distance along the quadrupole lattice centerline, K is the quadrupole force given by
B′/[Bρ], with B′ being the magnetic �eld gradient and [Bρ] being the beam rigid-
ity, and εx and εy are the unnormalized �edge� emittances de�ned in Eqs. (2.3) and
(2.4). The space-charge force is proportional to the perveance Q and the pressure
force is proportional to the square of the unnormalized �edge� emittances εx and εy.
For given perveance and unnormalized �edge� emittances, the beam envelopes do not
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Figure 4-1: Final focus lattice for ballistically neutralized drift.

change when the magnetic �eld is transformed proportional to the rigidity; and for
given perveance and rigidity, the beam envelopes are self-similar when the emittance
is proportional to the beam size and simultaneously the magnetic �eld is inversely
proportional to the beam size. For NTX, Q ∼ 0.0006, corresponding to a 25 mA
potassium beam at 300 keV. An equal perveance driver beam will correspond to a 10
kA Xenon beam at 2.5 GeV. It is worth noticing that during the �nal focus trans-
port the beam dynamics is space-charge dominated at the beginning, and becomes
emittance dominated as the beam approaches the focal plane.

Figure 4-1 shows the horizontal and vertical beam envelopes through the NTX
system, with and without beam neutralization after the �nal focus lattice. The
quadrupole �elds are chosen to obtain a beam of one-meter focal length (20 mm
radius, and 20 mr convergence) at the entrance to the neutralization region.

116



The heavy ion beam is space-charge dominated in the �nal focus system, where
it has a large cross section and is highly non-paraxial. The beam expands in the two
center magnets, which determines the amount of nonlinear magnetic �elds that the
beam samples as well as the degree of the non-paraxial motion. These geometrical
aberrations will change the focusing properties calculated by the envelope equations.
Therefore, particle tracking simulations require the knowledge of the multipole �eld
content of the magnetic �eld. It can be shown [16] that to third order the main
contributions to the beam dynamics come from the normal quadrupole, the normal
sextupole and pseudo-octupole components of the magnetic �eld. These three com-
ponents are included in all the numerical simulations performed for the design of the
lattice.

Neu�er [16] has shown that the geometric aberrations depend only on the non
perturbed (�rst order) particle trajectories; therefore the scaling properties of the
geometric aberrations for a �nal focus system depend only on the perveance Q, if the
scaled �eld reproduces the multipole components of the original �eld. He also found
a formula to estimate the correction (increase) of the spot size given in Eq. (4.3) due
to geometric aberrations:

∆rs ' 1350× `quad × θ3, (4.6)

where `quad is the length of the last quadrupole magnet and θ is the convergence
angle in radians. For NTX, the unnormalized emittance ε ∼ 20 π mm-mr, the
convergence angle θ ∼ 20mr, and `quad ∼ 0.4m, from which we estimate rs ∼ 1mm,
and ∆rs ∼ 4mm. In Chapter 5 we will show that experimentally and numerically we
obtain ∆rs ∼ 0.5mm, about a factor of 8 less increase in spot size due to geometric
aberrations. The discrepancy comes from the fact that the estimate in Eq. (4.6) was
obtained by analyzing a speci�c lattice con�guration (a quadrupole doublet) which
is very di�erent from the NTX lattice.
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For fusion applications we require that the �nal focus system will deliver the entire
beam pulse onto the target with the same small spot size. Chromatic aberrations
a�ect the focal spot radius due to deviations from the nominal ion momentum which
result in a variation in the focal length produced by the magnet system. They can
be separated into two types. The �rst kind of chromatic aberrations depends on the
velocity and current changes from the beam head to the beam tail. The velocity and
current changes result from initial transients in the injector, from voltage errors in
the accelerating gaps, and from residual momentum tilt during beam compression.
Di�erent slices of the beam may have somewhat di�erent beam envelopes through
the magnetic lattice, leading to variations in the beam size and convergence angle,
and therefore variable focal length from head to tail. The second kind of chromatic
e�ects depends on the momentum spread at a given beam slice (i.e., the longitudinal
emittance). It is produced along the beam line by thermalization of velocity errors.
For a driver there is a requirement to keep a small relative momentum spread of
δp/p ∼ 10−3, and to remove the velocity tilt by the time the beam reaches the focal
plane.

An estimate of the correction (increase) of the spot size [see Eq. (4.3)] due to
chromatic aberrations from momentum spread was obtained by Lee [61]:

δrs = 6fθ

(
δp

p

)
, (4.7)

where f is the focal length of the last quadrupole magnet, θ is the convergence angle in
radians and δp/p is the beam momentum spread. For NTX, the focal length f = 1m,
the convergence angle θ ∼ 20mr , and δp/p ∼ 10−3, from which we estimate ∆rs ∼

0.1mm. Hence, spot size increase due to chromatic aberrations from momentum
spread is negligible on NTX. Eq. (4.7) includes the partial cancellation of chromatic
e�ects by the space charge of a uniform density beam. The e�ects of beam space-
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charge on the beam dynamics also include nonlinear forces arising from non-uniform
charge density distributions as well as image forces from the beam pipe. These e�ects
depend on the length of the lattice and the clearance between the edge of the beam
and the walls of the chamber, and are negligible for a short system as NTX.

It is possible to infer the e�ects of momentum spread by studying the sensitivity
of the beam parameters to small changes in energy for a given beam slice. The results
can be evaluated by measuring the beam size as the energy is varied for a given beam
slice.

4.2 The NTX Final Focus Lattice

The pulsed quadrupoles for �nal focusing must have excellent �eld quality so as
not to introduce unwanted aberrations due to magnet imperfections. The design,
construction, and measurements of these magnets are presented in this section.

4.2.1 Lattice design

The NTX magnetic-transport section is designed to correspond closely to a typical
HIF driver �nal-focus channel. The section consists of four pulsed quadrupole magnets
separated by short drift regions, plus the drift regions at the two ends. Optical
scintillators imaged by CCD cameras and mechanical slit scanners [8] are used to
measure the beam pro�les and phase space distributions of the beam at the end of
the Final Focus lattice. The three-dimensional (3-D) layout of the magnets and the
beam source is shown in Figure 4-2.

Figure 4-1 shows the horizontal and vertical beam envelopes through the sys-
tem. The trajectory labeled �neutralized� models ideal neutralization by arti�cially
turning o� the transverse space-charge �eld after exiting the �nal-focus lattice. The
quadrupole �elds are chosen to produce a beam with 1-m focal length (20-mm radius
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Figure 4-2: NTX �nal focus transport layout.
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and 20-mr convergence angle) at the entrance to the neutralization region. The beam
is quite large in the two center magnets, which determines the required bore size and
winding radius.

Each magnet has a relatively short center section, and a substantial portion of
the magnetic �eld is contained in the end fringe �elds, which have signi�cant axial
components. Due to the large radius �uctuations in the focusing magnets, the ion-
beam dynamics is highly non-paraxial. Consequently, the usual beam-axis-integrated
method of representing �elds by normal multipoles of discrete length does not give
accurate particle trajectories in simulations, because these hard-edge �eld approxi-
mations omit the axial �eld components and nonlinear radial gradients that are ma-
jor sources of particle de�ection. Particle-tracking simulations therefore require the
knowledge of the full multipole content of the magnetic �eld. Previous work [16] has
shown that, to second order, the main magnetic-�eld multipoles contributing to beam
dynamics are the normal quadrupole, the normal sextupole, and the pseudo-octupole
components. These three components are included in all the numerical simulations
used in designing the NTX lattice, since 3-D magnetic analysis is essential.

4.2.2 Magnetic �eld modeling

Each magnet is a current-dominated quadrupole, with eight conductor turns per coil
in a single layer, arranged inside a cylindrical laminated-iron return core. A 3-D
�nite-element model of the magnets is generated using the ANSYS/Emag program
and is solved for the 3-D static �eld. A scalar potential formulation is used, with
source current elements used for the coil. The space modeled, a one-eighth section of
half a magnet, is shown in Figure 4-3. Far-�eld (in�nite boundary) elements bound
the end and the outer radius, 75 cm from the magnet midplane, which extends well
past the source and �nal focus points. A cylindrical Neumann boundary is used to
simulate the steel core in order to speed up the analysis when a �ne mesh is used.
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Figure 4-3: Symmetrical magnet model with one-half octant shown.

This choice is acceptable because a coarse-mesh model with steel included shows no
signi�cant saturation.

The resulting 3-D �eld map generated is decomposed into both normal and pseudo
multipoles as a function of distance in the axial direction. Figure 4-4 shows these
multipoles as a function of longitudinal distance z. Both half-octant models and
full-magnet �nite-element models, complete with spiral coil geometry, crossovers, and
leads, are computed to determine both symmetry-allowed and full-skew (normal and
skew) multipoles, respectively. The higher-order normal multipoles are comparatively
unimportant. Finally, we have performed beam-tracking simulations through the
lattice of focusing elements generated by superposition of these �eld maps.

4.2.3 Magnet design and fabrication

The NTX magnet design di�ers from the initial speci�cation [62] in the choice of a
larger bore and winding radius, as well as in the simpler coil design. Table 1 gives
the �nal design and operating parameters.
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Figure 4-4: Dominant (a) quadrupole and (b) pseudo-octupole coe�cients for the
multipole decomposition B⊥(r, θ, z) = G1(z)r cos(2θ) +G3(z)r

3 cos(2θ) + . . .

Parameter Value Unit
Beam Aperture Radius, Rb 14.9 cm
Magnet Winding Radius, Rw 17.32 cm

Steel Inner Radius, Ri 18.33 cm
Steel Outer Radius, Ro 25.63 cm

Mag., Total Lengths, Lm, L0 46, 50 cm
Magnet to Magnet Spacing 60 cm (ctr.-ctr.)
Field Gradient, B'=dBx/dy 2�5 T/m

Maximum Field, B 0.6 T, @ 12 cm
Number of Turns, N 8 Turns/coil

2-D Field Coe�cients, Bn 7× 10−4 T/T, @ 10 cm
Conductor Diameter, dc 4.65 mm

Magnet Current, Imin,-Imax 3.3�8.2 kA
Magnet Resistance, R 0.036 Ω
Magnet Inductance, L 232 µH

Pulse Length (full half sine), t 2.2 ms
Magnet Voltage (Max), V 2.7 kV
Pulse Energy (Max), U 7.8 kJ

Energy Loss/pulse (Max), Qt 2.7 kJ
Operating Pulse Rates (Max) 0.5, 0.1 Hz

Temperature Rise@Steady State (Max) 25 oC, (0.5 Hz P.R.)

Table 4.1: NTX quadrupole magnet parameters
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Figure 4-5: Concept for correcting coil winding errors. (a) Single-layer coil normally
introduces error currents due to incomplete current loops. (b) Adding a diagonal
lead-out can correct this problem and produce nearly perfect �elds.

The magnets are fabricated using a simpli�ed, single-layer coil design, featuring a
novel diagonal leadout. The diagonal leadout from the inner turn approximates the
staircase-pattern of missing currents that are inherently present in any spiral coil.
This leadout design allows short coils with a few turns to have relatively high �eld
symmetry. This concept is sketched in Figure 4-5.

Each magnet is driven by a capacitor, which is discharged through a series string
of thyristors to produce a half-sine-wave current pulse. A 2-mF capacitor is used to
achieve the full current with minimal voltage and to increase the pulse length, thus
reducing eddy currents. Bipolar charging of the capacitor is used to decrease the
voltage that appears between the magnet and the grounded housing by a factor of
two compared to unipolar charging.

We have performed 2-D transient magnetic modeling to determine the e�ect of
eddy currents in surrounding components, such as beam tubes, �anges, diagnostics,
and electron traps. Eddy currents in the beam pipe are found to be acceptable, with
a 7.4% loss of the peak �eld and a 0.28 ms �eld-peak-time lag from the source current
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Figure 4-6: NTX beam-pipe eddy currents and magnetic �elds from 2-D �nite-element
analysis. The linear dimensions indicate the beam-pipe thickness.

peak, as shown in Figure 4-6.
Six quadrupoles have been fabricated in order to provide two spares. One quadrupole

has been subjected to 104 full-current pulses to test reliability, and the others have
received 103 full-current pulses for acceptance testing. No cooling, other than free air
convection, is necessary. Figure 4-7 shows one of the coils during fabrication.

4.2.4 Magnetic �eld characterization

The choice of a technique to measure the quadrupole magnetic �eld was constrained by
two factors. First, the beam envelope varies signi�cantly within the magnet, making a
3-D map of the �eld necessary. This requirement rules out techniques, such as rotating
(harmonic) coils, that generate an axially integrated �eld measurement. Second, the
magnets are pulsed because cooling requirements prevent the magnets from being
operated continuously, except at relatively low �elds that would compromise the

125



Figure 4-7: Photograph of an NTX magnet during fabrication.
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Figure 4-8: Illustration of the orientation of the windings on the magnetic-�eld probe.
All windings have circular cross sections and consist of two layers.

accuracy of the measurement. The time-varying �elds preclude the use of Hall probes
and many other commercially available probes. Also, such probes do not allow us to
study the e�ect of eddy currents in the beam pipe on the magnetic �eld.

The quadrupoles are characterized using simple pickup loops to monitor the chang-
ing �ux as the magnets are pulsed. The probe design, sketched in Figure 4-8, balances
the considerations of accuracy, signal strength, and ease of fabrication. Three sep-
arate pickup loops are incorporated into each probe to permit the measurements of
the magnetic �eld vector. Each loop has 20 turns (two layers of ten turns) of 0.13-
mm (5-mil) copper wire. The three cross sections have slightly di�erent diameters to
minimize mechanical interference between the sets of windings. Four of these probes
are spaced equally around a disk at a 10-cm radius and mounted on a supporting
cylinder inserted into the magnet bore. The cylinder can be rotated about its axis
or adjusted vertically and horizontally, and the magnets are moved longitudinally on
rails so the probes can sample di�erent axial positions.

We have two di�erent modes of �eld measurements. For initial characterization,
the axis of the supporting cylinder is aligned with the magnet mechanical axis. With
the probes positioned lengthwise near the center of the magnet, the cylinder is rotated
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Figure 4-9: Oscilloscope traces of the probe output when the supporting cylinder is
rotated to place probes at center of the quadrupole windings. The left traces are from
loops oriented to sense the radial �ux, and the right traces are from loops sensing the
azimuthal �ux.

to maximize either the radial or azimuthal �eld for the four probes. Measurements
are then recorded as the cylinder is rotated in 15-degree increments for 90 degrees.
The magnet is shifted axially, and measurements are taken again as the cylinder is
rotated back in 15-degree steps to the starting angle. This process is repeated with the
probes near each end of the magnet. Each measurement records all three components
of the �eld vector at four positions. Although this is a very sparse �eld mapping,
any fabrication problems will stand out. The second mode entails a detailed mapping
of the �eld over a constant radial position relative to the magnet axis. These data
are then used both to determine the tilt and o�set of the quadrupole �eld axis with
respect to the mechanical axis and to identify higher order modes.

Output from the probes is shown in Figure 4-9. The signal-to-noise ratio is excel-
lent for probe orientations aligned with the �eld. Careful adjustment of the rotational
position of the probes can reduce at least one of signals to the noise level in the other
probe orientation. The �eld components calculated from the signals are shown in
Figure 4-10. The applied magnet current is shown with the �eld plots to demonstrate
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Figure 4-10: Magnet current along with the integrated and calibrated radial �eld
(left), and the corresponding azimuthal �eld (right).

the �delity of the system and analysis. Figure 4-11 compares the measured longitu-
dinal pro�le of the quadrupole �eld with the computed pro�le, where the peak �elds
are normalized for comparison.

4.3 Beam Matching and Transport

The main issue of the magnetic-focusing experiments is the control of emittance
growth due to higher-order �elds from magnetic multipoles and image �elds. In this
section, we present experimental results from NTX on beam envelope and phase space
distributions, and compare these data with the results of particle simulations by the
PIC code WARP.

As discussed in Chapter 3, the K+ beam is produced within the source chamber by
a standard hot-plate [46] of a 2.54 cm diameter alumino-silicate source across a diode
with a 12 cm gap. The pulsed power is provided by a Marx generator and crowbar
switch that were used in the Multiple Beam Test Experiment (MBE-4) [42]. This
Marx generator produces a pulse with 0.5�1 µs rise time and is crowbared to produce
a 6-µs ��at-top�. A smooth, uniform, bright beam pro�le is generated by increasing
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Figure 4-11: Calculated and measured NTX quadrupole gradients.

the source temperature, by smoothing the source surface and by aperturing the beam
[8]. The use of an aperture to vary the perveance also generates a high-brightness
beam by removing the edge of the beam after it exits the diode. Beam scraping,
however, produces secondary electrons that are controlled by an electron trap. Figure
3-16 shows a sketch of the ion gun and the beam scraper system, as designed using the
EGUN code, and Figure 3-17 is a photograph of the aperture and electron trap located
at the exit of the NTX diode. The trap consists of two metal tubes, each of 5 cm
length, and 6.2 cm inner diameter with an aperture plate in between. The upstream
and downstream tubes are located 0.8 cm from the aperture plate. A nominal negative
3 kV potential is provided on each of the metal tubes, providing adequate electron
trapping in the presence of the ion beam. Another electron trap, 7.5 cm in radius, is
located at the downstream end of the beamline, 10.16 cm downstream from the last
quadrupole magnet. A nominal negative 7 KV voltage is used across this second trap
to make it e�ective for collection of stray electrons.
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The transport section consists of a double FODO channel with very short drift
regions, including the drift from the source into the channel, and the drift into the
plasma neutralization chamber. Figure 4-1 shows the calculated beam envelope (x
and y) through the system. The beam is quite large in the two center magnets, which
determines the required bore size and winding radius. The magnet has a relatively
short center section and a substantial portion of the magnetic �eld is contained in
the end fringe �elds, with signi�cant axial components. The beam is transported
through a 2.4 m long path magnetic section. The distance from the beam aperture
radius to the center of the �rst magnet, the quadrupole length, and the quadrupole to
quadrupole spacing are 26 cm, 46.50 cm, and 60 cm, respectively. The �eld gradient
and maximum �eld of a magnet are calculated to be 2�5 T/m and 0.6 T, respectively,
with a current range of 3.3 to 8.2 kA. The pulser for each NTX quadrupole magnet
consists of a bipolar-charged 2 mF capacitor which is discharged through thyristors to
produce a current half-sine wave with a pulse width of 2.3 µs. Bipolar charging and a
large capacitance were chosen to minimize the voltage from the magnet leads to the
grounded magnet housing for the maximum design current. The pulser output voltage
is monitored with a resistive voltage divider and the magnet current is monitored with
a current transformer. Inside the magnetic lattice, a thin wall (3.3 mm) stainless steel
tube of 13 cm inner radius is installed. Eddy currents are calculated by transient 2-D
�nite element analysis, and it is found to result in a 7.4 % loss of the peak �eld, and
a 275 µs peak-�eld-time lag from the source current peak. It is observed that the
measured axial �eld fall-o� pro�le agreed well with the computational model [63].
Our measurements with and without stainless steel tube also agree well with the
calculations.

Several diagnostics have been used to characterize the ion beam. The primary
diagnostics for this experiment consist of (1) a Faraday cup, (2) a slit /slit-cup system
and (3) a scintillator with a gated CCD camera system. The Faraday cup and the
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slit cup each consists of a collector and a guard ring (grid) with bias voltages that
are controlled to collect beam ions only. In addition, we also monitored currents
�owing through the aperture plate and each of the two electron traps. The removable
Faraday cup is inserted into the NTX beamline at the exit of the injector and at
the end of the magnetic lattice to measure total beam current. The slit/ slit-cup
arrangement is used to measure the line-integrated beam pro�le (with slit cup only)
and emittance (with slit and slit cup) at the same locations. Beam pro�le is measured
optically using a glass or ceramic (96% alumina) scintillator with associated camera.
Charge neutralization of this scintillator is provided by a high-transparency (80�
90% transmission) metallic mesh placed on or near the surface of the scintillator.
By applying a negative bias to the mesh, stray external electrons are decelerated
and de�ected away from the scintillator, limiting their contribution to the optical
image to negligible levels. Time-resolved beam-induced images on the scintillator
screen are captured with a Roper Scienti�c gated, intensi�ed CCD camera viewing
the scintillator through a vacuum window, and images are processed using the public
domain program ImageJ.

We have developed a new technique to measure the 4-dimensional phase space
distribution of the beam using the beam imaging diagnostics [8], as discussed in
Section 2.4. The phase space distribution f(x, y, x′, y′) can be measured by scanning
the beam with a small pinhole (20 mils in diameter) and letting the transmitted
beamlet to travel a long distance (∼1 meter) before striking the scintillator where
an image is taken. The position of the pinhole de�nes the coordinates x and y, and
from the image we can extract the density distribution of x′ and y′. Due to the
fact that the beam at the exit of the �nal focus system is prepared to focus to a
small spot in the absence of space charge, a standard pepperpot technique does not
work since all the individual beamlets would fall on a single spot. Figure 2-11 shows
schematically this technique along with some images of the individual beamlets that
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show a very detailed structure of the phase space distribution. The knowledge of the
4-dimensional phase space is essential in order to run more realistic simulations of the
beam focusing to a small spot while drifting through neutralizing plasma.

The primary simulation tool is WARP3D [13]. The code is used to simulate the
ion beam from source through the 4-quadrupoles and the neutralized drift section to
the target. Details of the experimental setup are incorporated into the code including
all electric (electrodes) and magnetic �elds (third order non-linear magnetic �elds as
calculated by ANSYS).

The ion beam extracted from the Pierce-type NTX diode su�ers from spheri-
cal aberrations, as evidenced by phase-space distortions (high emittance) and non-
uniform density pro�les. Since the source of these aberrations is the presence of
high-order �eld components, the particles at the edge of the beam are the most af-
fected. A high-brightness beam is produced on NTX by removing the beam edge
after the pulse is generated in the diode [43].

A high brightness, low emittance ion beam is an essential component of the Neu-
tralized Transport Experiment (NTX) to obtain the minimal spot size at the focal
plane. To study beam transport through the �nal focus system we have used an
apertured, 300 keV, 25 mA, beam with an initial unnormalized edge emittance of
12.5 π-mm-mr and a semigaussian transverse phase-space distribution in the WARP-
3D simulations.

4.3.1 Envelope control

A series of measurements have been performed to demonstrate the control that
WARP3D has in predicting the quadrupole �elds to obtain prescribed beam param-
eters. The �rst case is to produce a round beam with the nominal parameters of 20
mm radius and 20 mr convergence (one-meter focal length).
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Figure 4-12: Experimental (top) and WARP-3D simulation (bottom) results of the
NTX beam pro�le and phase-space distribution at exit of channel.

Figure 4-12 shows good agreement between the measured (top) and calculated
(bottom) beam pro�le and phase space distribution for the nominal energy (300 keV,
25 mA) and quadrupole �eld con�guration at the entrance to the neutralization re-
gion. Figure 4-12 also shows that the �nal parameters for the nominal case correspond
to that of a beam of the required 1-m focal length (20 mm radius and 20 mr conver-
gence).

The slight distortion (asymmetry) of the beam pro�le has been traced back to
a small rotation (5 mr) of one of the quadrupoles. The beam has a uniform core
with a narrow rim due to �eld aberrations and the �nal beam emittance of the beam
is about 25 π-mm-mr, which should allow the beam to be focused to a 1�2 mm
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Figure 4-13: Numerical results (right) and camera images (left) of the NTX beam
pro�les as a function of the quadrupole �eld con�guration.

focal-spot radius in neutralized-transport experiments. Furthermore, the Faraday
cup measurements of the beam current at the entrance and exit of the �nal focus
system show insigni�cant beam loss along the transport channel.

We have also compared the beam pro�les for several quadrupole strength con-
�gurations as calculated by WARP3D and as measured. In Figure 4-13, for each
quadrupole, the corresponding row shows the pro�les for a change of -5%, 0% and
+5% from the nominal quadrupole strength. This comparison shows good agreement
between measurements and simulations.

In order to study the dependence of the spot size on the convergence angle, we
have varied the quadrupoles to obtain various values of the convergence angle θ (5
mr, 10 mr, and 20 mr) for a given beam energy and current. Agreement between
theory and experiment is excellent. Finally, the perveance is varied, and the same
code-experiment agreement is demonstrated.
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Figure 4-14: Numerical results (above) and camera images (below) of NTX beam
pro�les as a function of the beam energy.

4.3.2 Energy scan

We have also performed a complete characterization of the quadrupole lattice by
comparing experimental results with particle simulations when the beam energy (and
current) is varied. Again, the beam shape varied as predicted by WARP3D, when a
3% energy shift correction is applied. Figure 4-14 shows good agreement between the
calculated (top) and measured (bottom) beam pro�les at the exit of the �nal focus
system as the beam energy is varied in steps of 3% around the nominal energy which
corresponds to the image at the center. The numerical simulations track the beam
behavior as the beam expands by a large factor as the energy changes from -9% to
+9% around the nominal energy (Figure 4-15).

Since the unnormalized �edge� emittances εx and εy are weakly dependent on
the energy, we have also veri�ed a property of Eqs. (4.4) and (4.5), that the enve-
lope parameters a, a′, b, and b′ do not change when the magnetic �eld is transformed
proportional to the rigidity, i.e., proportional to the momentum of the ions.
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Figure 4-15: Calculated (blue plus sign) and measured (red diamond) beam sizes at
the exit of the �nal focus system as the beam energy is varied. A factor of 3% is
subtracted from the energy used in the calculation.

4.4 Sources of Errors

While we have very good agreement between theory and experiment in many aspects,
there are several observations, which are not yet well understood. We have mentioned
the need for an arbitrary energy calibration factor in order to obtain agreement be-
tween theory and code. To re�ne the energy calibration in the experiment, we have
performed a series of time-of-�ight (TOF) experiments, as well as careful calibration
of resistive and capacitive monitors. Although the three di�erent ways of energy
calibration agree within the experimental uncertainties, the discrepancy with theory
persists. In pursuit of the explanation of this discrepancy, we suspect that stray elec-
trons might play a role. To ascertain this e�ect, we have incorporated a mesh liner
along the pipe. However, while the currents are clearly collected on the mesh, its net
e�ect on the beam pro�le is relatively minor.
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To quantify these e�ects, a series of experiments are performed. These include:
(a) stray electron e�ects on the beam inside the quadrupole lattice, (b) calibration of
beam energy, (c) measurements of quadrupoles �eld strength, (d) e�ectiveness of the
diagnostic devices, and (e) beam halo formation.

4.4.1 Stray electron e�ects inside the quadrupole lattice sec-

tion

As we mentioned in Sec. 3.3, the NTX magnetic transport section contains an aper-
turing system for variable perveance, brightness and beam size. This aperturing
technique is provided with a sandwich-type electron trap to collect electrons.

Ions from the poorly matched beam head, and halo ions in the main pulse of
the beam can strike the outer wall of the �nal focus system beam tube. A single
ion impact can produce thousands of secondary electrons depending on the energy
and angle of incidence, with ions of grazing-angle incidence producing the largest
secondary electron yields. Only a small fraction of the beam ions striking the wall
is needed to provide a space-charge-limited supply of electrons from the wall. If the
secondary electrons are not stopped, they are attracted by the beam potential and can
provide some degree of beam neutralization. Presence of wall electrons is measured
using a long radial metal mesh, which is installed inside the magnetic drift section.
Mesh radial diameter, space of wire and mesh length are 23.5 cm, 1.27 cm and 2.28 m,
respectively. Figure 4-16 shows the 23.5 cm diameter metal mesh inside the magnetic
transport section, which is biased with a ±2kV potential.

The beam pro�le at the scintillator located at the end of the �nal focus magnets
and the current in the mesh as a function of the mesh voltage are measured. Figure 4-
17 shows the measured current in the mesh by varying its bias voltage. As a negative
voltage is applied across the mesh, there is no signi�cant current measured in the
mesh. It shows that there is insigni�cant number of ions from the beam halo near the
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Figure 4-16: A cylindrical metal mesh inside the beam pipe in the magnetic �nal
focus section.

beam pipe wall. When the voltage is switched to positive, signi�cant current in the
mesh is measured. It shows that wall electrons are collected in the positive biased
mesh. These electrons are generated in the drift tube wall. But the beam is not
a�ected by electrons.

Figure 4-18 shows the beam radii corresponding to several beam energies under
the condition of the mesh bias powered to ±2 kV and without any mesh voltage. By
comparing these three cases, we �nd that the beam radius changes are insigni�cant.
It is inferred that for a large pipe, the wall electrons spend only a small fraction of
their time within the beam. The electrons are moving at their greatest velocity while
passing through the beam, reducing their net e�ect of beam neutralization. Though
a mesh inside the �nal focus magnetic section is not necessarily e�ective due to the
large diameter of the beam pipe, it provides good evidence that a positively biased
metal mesh can reduce beam neutralization due to stray electrons. This e�ect can be
very signi�cant in a small size drift tube, as we have found in the neutralized drift
section with its 3 inch diameter pipe [8].
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Figure 4-17: Mesh current when applying voltage across the mesh. Di�erent lines
correspond to di�erent energies, ranging from 244 keV to 320 keV.

Figure 4-18: Beam radius as a function of beam energy as the mesh bias is turned on
at ±2 kV and is turned o�.
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4.4.2 Calibration of energy

The NTX source is powered from a Marx generator as mentioned in Chapter 3. The
voltage is measured with a capacitive voltage divider. Calibration of beam energy
is important because of the sensitivity of beam transport to the beam energy in a
quadrupole transport channel as we have shown in Section 4.3. To provide a cross-
check of the beam energy measurement, the capacitive system is compared to time-
of-�ight measurements and a resistive voltage divider system. The ion beams are
capable of supporting and transmitting a variety of waves. Longitudinal space-charge
waves are longitudinal oscillations of the beam within the conducting boundary of
a vacuum wall. These waves have been studied and applied to continuous electron
beams in microwave devices, bunched charged particle beams in particle accelerators,
and space-charge dominated charged particle beams. The equilibrium and stability
of these waves have been explored theoretically. In this subsection, we discuss a
diagnostic technique that utilizes longitudinal space charge waves in heavy-ion beams
to determine the beam energy using the time-of-�ight (TOF) method. In the TOF
method we longitudinally perturb a slice of the beam with a fast voltage pulse applied
to a kicker near the path of the beam. The kicker may be any cylindrically symmetric
mechanical structure near the beam that can rapidly generate a localized longitudinal
electric �eld on the beam. A typical kicker and kick pulses are shown in Figure 4-19.

The voltage pulse applied to the kicker locally perturbs the energy of the beam
particles passing near the structure. The perturbation propagates in the form of a
wave that travels with the beam. In the long wavelength limit, there is a fast wave
traveling toward the front of the beam pulse and a slow wave traveling toward the rear.
Measuring the arrival time of the resulting space charge wave at a detector placed a
suitable distance downstream provides a measure of the beam energy. The structure
utilized as a kicker is a thin aperture which also limits the beam transversely for the
�nal focus experiments. The NTX TOF pulse has a rise time of about 4 ns, a fall time
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Figure 4-19: Typical waveforms of kicker (yellow trace) and kick (green trace) pulses
for time-of-�ight measurements. The oscilloscope vertical scale is arbitrary, the hor-
izontal scale is 2 µs per division. The magenta and blue traces are auxiliary traces
captured in this image.
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Figure 4-20: Space charge wave in NTX for a low-current beam.

about 1 µs, and a peak output voltage of -2.5 kV. The path length between the kicker
and registering beam current at a Faraday cup is 2.48 m. The initial pulse resembles
the longitudinal electric �eld (spatial derivative of the potential perturbation) at the
kicker. Beam ions are spread apart at the front of the wave and compressed at the
rear. The result is a double pulse which is very well de�ned in time. The time
reference for TOF measurements is the point in which the wave passes through zero.
This corresponds to those particles which were at the location of the aperture at the
time that the pulser voltage is turned on. The comparison between data and the 1-D
model is shown in Figure 4-20 for a small current (1 mA).

Agreement between model and data is good. However, for a large current (25 mA)
the discrepancy varies. Figure 4-21 shows relative di�erence between TOF beam
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Figure 4-21: The relative di�erence between TOF beam energy (open squares), re-
sistive divider voltage (diamonds), and capacitive divider voltage readings (0% line)
as a function of NTX Marx voltage. Both TOF and resistive divider measurements
are shown as a function of capacitive divider voltage. 2% error bars are assumed for
both sets of measurements. A linear �t to the data points is also shown for each
set of measurements. The voltage indicated by the resistive divider lies between the
capacitive divider and the TOF measurements.

energy (open squares), resistive divider voltage (diamonds), and capacitive divider
voltage readings as a function of NTX Marx voltage. Both TOF and resistive divider
measurements are shown as a function of capacitive divider voltage. 2% error bars
are assumed for both sets of measurements. A linear �t to the data points is also
shown for each set of measurements. The voltage indicated by the resistive divider
lies between the capacitive divider and the TOF measurements.

The strength of the 4 quadrupole magnets is provided by 4 separate power supplies
using a pulser. Waveforms of each power supply are monitored on an oscilloscope
screen. There is a ±0.5% magnetic �eld error bar when measured on wave forms
displayed on the oscilloscope. Moreover, the magnet current monitor is a current
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transformer with an accuracy speci�cation of +1% and -0%. The existing timing setup
assumes that the peak quadrupole �eld occurs at the peak of the monitored magnet
current. In reality, there is attenuation and a time shift because of the di�usion of
the magnetic �eld through the 3.3 mm pipe wall. This phase shift is approximately
275 µs based on ANSYS 2-D transient EM �nite element modeling. Because of this
time shift, the timing of the beam may not be during the peak quadrupole �eld. By
the same modeling, the peak �eld is attenuated by approximately 7% and has been
considered in setting the magnet currents.

4.4.3 E�ectiveness of diagnostic devices

As was discussed in Sec. 2.4, the diagnostics that have been used in this experiment
are Faraday cups, Slit cups and scintillators associated with electronics and a CCD
gated camera. Though slit cups have available an electron guard ring, there exists the
possibility of generation of secondary electrons noise by the energetic particles, whose
presence can mislead the interpretation of halo particles studies. Moreover, once the
energetic particles strike on a scintillator, its e�ectiveness degrades as a function of
the incoming beam particle energy.

4.4.4 Beam halo formation

Finally, we have observed clear evidence of halo formation, i.e., the rings surrounding
the central image, in both con�guration space (Figure 4-22) and velocity space (Figure
4-23).

We have not been able to account, from numerical simulations, for the origin
of the halo particles in con�guration space. One source of halo formation could be
the unavoidable non-uniform ion emission from the alumino-silicate emitter, due to
fabrication tolerances or non-uniform temperature distribution.
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Figure 4-22: Evidence of beam halo formation in the con�guration space. Image for
a 6% o�-energy beam, measured at the end of the �nal focus system (beam size ∼2
cm)

Figure 4-23: Evidence of beam halo formation in the velocity space. Image from a
pinhole positioned at the end of the �nal focus system and at the center of the beam,
as measured at the focal plane.
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Figure 4-24: Translaminar components originated from non-ideal emitter position
with respect to Pierce electrode.

The origin of the halo formation in velocity space has been traced back to a diode
geometry property. The emitter is slightly receded from its ideal location with respect
to the Pierce electrode. This non-ideal geometry generates ion trajectories which
travel at an angle non-similar to the trajectories of the main body of the beam, and
generate so-called translaminar components (Figure 4-24). This components appear
as a halo when the the beam is intercepted by a pinhole and the transmitted current
is imaged on a scintillator as shown in Figure 4-23.
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Chapter 5

Final Neutralized Drift to Target

A crucial aspect of NTX is the validation of neutralized transport in the fusion cham-
ber. As described in Chapter 2, the presently favored concept for neutralization of
driver beams involves passing the ion beams through a low-density plasma before they
enter the fusion chamber. Because the plasma which is in contact with an emitting
surface supplies enough electrons, the neutralizing electrons remain trapped in the
beam potential as the beam exits the plasma, providing charge and current neutral-
ization in the chamber. In addition, the main driver beams arrive after the hohlraum
exterior has been heated to about 100 eV. As these pulses approach the target, they
are photostripped by soft X rays from the target. They also receive further neutraliza-
tion from the plasma formed around the target by photoionization of the background
gas.

5.1 Ballistic Neutralized Transport

The layout of the 1-m NTX plasma neutralization section is shown in Figure 5-1. The
upstream plasma, modeling the plasma plug that neutralizes the beam after it exits
the �nal-focus section, consists mainly of electrons and doubly charged aluminum
ions from a pulsed cathode-arc source (sometimes called a metal-vapor vacuum arc or
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Figure 5-1: NTX neutralization section layout.

MEVVA source). The plasma itself is centered 0.25 m downstream from the end of
the last magnet so that it is su�ciently far away from the fringe �elds, and it extends
about 0.05 m in both directions. After the beam exits this �rst plasma, it drifts 0.75 m
through a 3.5-cm-radius beam pipe into a diagnostic area at the nominal focal point.
A second plasma generated at the center of the cross simulates the photoionized gas
that will surround a target hohlraum after it has been heated by early low-current
�foot� beams. This �target� plasma is generated by a pulsed radio-frequency (rf)
source and has a charge density approximating what is expected in a fusion chamber.
A diagnostic box is placed at the focal point.
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5.2 Plasma Source

NTX uses two plasma sources to demonstrate the e�ects of beam neutralization.
A pulsed cathode-arc source provides an upstream aluminum plasma for the initial
neutralization, and a pulsed radio-frequency (rf) source provides a volume plasma near
the beam waist. These sources can model the e�ects of beam neutralization well, even
though they obviously cannot duplicate the photoionization or the collisional stripping
and scattering that are expected in a driver.

We have used the electromagnetic PIC code LSP [14,15] to determine the require-
ments for both plasma sources. Numerical simulations indicate that we require a
neutralizing plasma with a length in the range of 10�20 cm and an electron density
that is 1�100 times the nominal initial NTX beam density of about 3 × 108 cm−3.
The density of the target plasma, of course, will increase as the beam impinges on
the target due to continuing photoionization by X rays from the hohlraum. However,
the nominal plasma density around the target is expected to be comparable to the
�nal beam density. For NTX, this value will be around 1010 cm−3, depending on the
perveance and the focal-spot radius.

5.2.1 Cathode-arc plasma source

The pair of pulsed cathode-arc plasma sources shown in Figure 5-2 have been designed
and fabricated at LBNL for the NTX neutralized-transport experiments. The density
and duration of the metal plasma can be adjusted over a very wide range. For
example, aluminum plasma of density 108 − 1012 cm−3 can be produced in pulses of
1�1000 µs by selection of suitable arc current and discharge geometry. These sources
have a negligible fraction of neutral atoms and molecules in the plasma, making them
ideal sources for a neutralizing plasma.
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Figure 5-2: NTX cathode-arc plasma sources mounted on beam pipe. Plasma is
injected in the path of the ion beam through openings in the aluminum metal shield.
The shield is designed to reduce the magnetic �eld at the location of the ion beam,
to limit plasma entering the quadrupole region, and to prevent macroparticles from
the source from entering the beam region.
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The plasma sources are of the �mini-gun� type, consisting of a replaceable cathode
rod of 0.625-cm diameter and about 2.5-cm length, a ceramic insulator as part of the
cathode assembly, and a grounded anode body [64]. The source is coupled to an
open macroparticle and neutral-atom �lter [65], consisting of a copper coil with a
90o bend. The �lter removes particles from the plasma stream, allowing only clean,
fully ionized metal plasma to reach the NTX beam line. Two of these source/�lter
assemblies are installed on NTX, injecting plasma from opposing sides to produce a
symmetrical plasma distribution. The consumable cathode of each source is made
from aluminum, because deposition of aluminum on the beam line components does
not introduce foreign material. The lifetime of the cathode before maintenance is
estimated to be about 105 pulses.

In initial tests, the two source units (plasma gun and �lter) are mounted in a high
vacuum. A large ion collector, made from a �at, isolated sheet of stainless steel, is
positioned between the sources and biased negatively to repel electrons and collect
ions. The plasma ion current proves to be noisy, as is typical for cathodic vacuum
arcs. We use the plasma at about 250 µs after arc triggering, just before the second
maximum of the plasma current, so repeated measurements of the plasma ion current
are made at that time to get information on statistical �uctuations. The result is
shown in Figure 5-3.

The source units are then mounted on a large �ange to be inserted in the beam line.
The �ange, with sources and the beam shield, is evacuated with a small turbomolec-
ular pump to a base pressure of about 10−5 Torr. To demonstrate the shot-to-shot
reproducibility, ten successive ion current pulses are overlaid in Figure 5-4. Through
the body of the pulse, the ion current on repeated shots is seen to �uctuate by about
±10%.

The plasma density can be estimated by noting that the ion current is given
generally by ji = Zenivi, where ji is the ion current density, Z is the average charge
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Figure 5-3: Ion current signal from the two cathode-arc plasma sources, each operat-
ing with 450 A arc current and fed by the same pulse-forming network.

Figure 5-4: Aluminum ion current of ten successive arc pulses collected by an ion
collector at the location of the NTX ion beam.
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state number, e is the elementary charge, ni is the ion number density, and vi is the
average ion velocity in the direction of the collector, which is here identical with the
plasma �ow velocity. From previous work [66], it is known that Z = 1.7, vi = 1.54×105

m/s, and with an area of collection of about 10−2 m2 we obtain ni ' 1.8×1010 cm−3 for
the average plasma density inside the metal shield at about 250 µs after arc triggering,
at a pulse-forming network (PFN) charging voltage of 2.0 kV. This density can be
controlled either by changing the distance between the �lter exit and the beam shield,
or by adjusting the arc current through the PFN charging voltage.

A commercial Langmuir probe from Scienti�c Systems, together with its accom-
panying SmartSoft software, is used to measure the density of the aluminum plasma
produced by the cathode-arc source as a function of space and as a function of dis-
charge voltage. Since the plasma streams into the beam line at supersonic ion ve-
locities, the analysis algorithms contained in the SmartSoft software cannot be used.
However, using the ion saturation current from the measured current-voltage (I�V)
characteristics and making simplifying assumptions about the aluminum plasma al-
lows us to estimate the plasma density. We �nd that the NTX cathode-arc source
produces plasmas with densities in the 1010 − 1011 cm−3 range and that the plasma
density is proportional to the discharge voltage over the range from 1.5 kV to 2.5
kV. The measurements show that the plasma density along the axis is peaked at the
location of the pair of entry ports where the plasma enters the beam line and drops
o� over a distance of a few centimeters. At the axial location of the entry ports, the
density is greatest near the entrances to the two ports, and decreases towards the axis
since the plasma expands as it moves away from the ports.

The Langmuir probe requires 5 µs to acquire each data point on the I�V char-
acteristic, and each I�V characteristic is comprised of 200 points. Thus, to obtain
the temporal resolution necessary to measure the plasma density at a given instant
during the 300 µs cathode-arc discharge, the Langmuir probe is operated in the �box-
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Figure 5-5: Each point on the I�V characteristic is taken from a single shot of the
cathode-arc plasma source. The shot-to-shot variability produces a spread in the
data. The ion saturation current can be used to determine the plasma density.

car� mode. In the boxcar mode, a trigger pulse generated at the desired time during
the discharge triggers the Langmuir probe to take a single I�V measurement. The
cathode-arc system must then be triggered 200 times to acquire a complete I�V char-
acteristic. The 10% � 20% shot-to-shot variation of the cathode-arc source is re�ected
in the scatter of the points in the IV characteristic shown in Figure 5-5. Despite these
�uctuations, the ion saturation current Isat can be measured from these data and used
to calculate the plasma density.

Figure 5-6 shows the dependence of the ion saturation current on the discharge
voltage. Below 1.5 kV, arc triggering does not occur. Operation above 2.5 kV is not
possible with the PFN presently in place. The data show that the plasma density
can be varied by a factor of four by adjusting the PFN charging voltage.

The axial density pro�le is shown in Figure 5-7. The axial extent of the plasma is
approximately 5 cm and is strongly peaked near the port openings which are located
at z = 144 mm. It should be noted that even though the densities plotted in Figure
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Figure 5-6: Ion saturation current as a function of NTX cathode-arc dischage voltage.
The plasma density varies proportionally with this current.

5-7 are those computed by the questionable SmartSoft algorithm, they are very close
to the values calculated using the simple model outlined above. Moving the Langmuir
probe in the transverse direction allows us to measure the transverse pro�le of the
plasma stream. From the ion saturation current measured at numerous points across
the beam path, we �nd that the plasma expands and the density decreases as the
plasma moves away from the ports, and the density is smaller near the top of the
beam-line tube.

5.2.2 Radio-frequency plasma source

A radio-frequency (rf) plasma source, shown in Figure 5-8, has been designed and
assembled at PPPL to model a target plasma in NTX [67]. The goal is to generate
plasmas with electron densities up to 1011 cm−3 and a pressure in the range of 10−6−

10−5 Torr, requiring e�ectively full ionization. The low pressure is important to
prevent neutrals from stripping the beam ions to higher charge states.
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Figure 5-7: Axial pro�le of the plasma density as a function of longitudinal position
near the plasma entry ports.

The pulsed plasma source has a six-way cross at the center of its design. A turbo-
pump attached to one face maintains the vacuum, while the gas inlet and the rf
quartz window are attached to the opposite face. A three-turn copper spiral antenna
is situated inside a shielded box and faces the window. The rf matching network is
directly connected to the antenna enclosure and is tuned to match the low impedance
antenna to the 50 Ω transmission cable. The drift tube for the ion beam is connected
to two �anges on the six-way cross perpendicular to the turbo-pump and antenna.
The plasma drifts into the center of the cross, and intersects the propagating ion
beam. The source operates by applying a pu� of argon gas and a pulse of rf power
to the antenna. The potential advantages of pulsed operation are that it can easily
operate at high peak rf power levels, and the amount of gas can be limited. The
plasma density and the neutral gas pressure are issues primarily while the ion beam
is passing through the plasma, an interval of about 100 µs. Consequently, the plasma
parameters and neutral-gas pressure are dynamic quantities and need to be measured
as a function of time in order to evaluate source operation.
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Figure 5-8: PPPL rf Argon plasma source before installation. Plasma is created in
the six-way cross along the ion-beam path.
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A typical ion-gauge controller does not have the time response to measure the quick
pressure bursts when a gas pu� is applied to the system. However, by measuring the
voltage across a resistor placed in series with the collector current of the gauge, the
dynamic absolute pressure in the plasma source can be ascertained. The dynamic
pressure measurement is calibrated at a �xed pressure while the pressure gauge is
read, and the voltage across the resistor is recorded. To insure that the observed
rise time is indicative of the rising gas pressure and not the RC time response of the
circuit, the pressure measurement for a given plasma condition was repeated with two
di�erent resistors with an order-of-magnitude di�erence in resistance. The pressure
evolutions for the two resistors were in agreement. Applying a 5-ms gas pu� to the
plasma source, the pressure sharply rises to 2 mTorr and pumps away in about one
second. This time scale is appropriate for NTX because the experiment produces a
100-µs ion beam every 15 seconds. The plasma electron density is measured with
the Langmuir probe because this device compensates for the e�ects of rf �elds. Also,
since the pulsed plasma source is found to have very reproducible breakdown time
and plasma parameters, the Langmuir probe can make time-resolved measurements.

To operate the plasma source, the gas valve and the rf power are triggered at the
same time (t=0). In this mode, it is easy to deliver more than 2 kW of rf power
to the source, compared to only 1 kW for continuous plasma source operation. The
power is measured with a directional coupler and calibrated diode. Figure 5-9 shows
the source characteristics versus time for a net forward power of ∼3.5 kW. Before
t=3.75 ms, the plasma density is less than the sensitivity of the Langmuir probe (∼
107cm−3), and the neutral pressure is below the sensitivity of the dynamic pressure
measurement (10−6 Torr). The onset of breakdown is clearly observed in the forward
and re�ected rf power versus time. The rf matching network is adjusted so that there
is a maximum net power delivered to the plasma. At t=3.75 ms, the electron density
is 1011 cm−3, and the neutral pressure is simultaneously low. The e�ective ionization
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Figure 5-9: Time evolution of neutral gas pressure and plasma electron density (solid
circles) in the pulsed plasma source. One upgrade under consideration is replacing
the gas valve with a faster one to reduce the length of the gas pu� and the total
amount of gas into the system. Another upgrade would use a pulsed rf supply to
increase the rf power level.

fraction for t=3.75 ms is in the range of 50�100%. At later times, the power density
is not su�cient to sustain the ionization fraction, and the neutral density rises faster
than the electron density.

One di�erence between the initial source tests at PPPL and those at LBNL is that
the rf generator is unable to provide 3.5 kW of power at LBNL and is limited to 2.5
kW. This lower power limits the maximum plasma density that could be achieved. A
number of density measurements are made in the six-way cross with the Langmuir
probe. A pro�le measurement is made transverse to the axis of the plasma source
and turbo-pump (Figure 5-10). The density is peaked on axis. There is a factor of
two drop near the plasma source wall radius of 5 cm. Distances greater than 5 cm
from the center of the cross are hidden from the straight-line path of the plasma out
of the source. There, the density decreases by an order-of-magnitude at a distance 5
cm from the wall radius of the plasma source.
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Figure 5-10: Plasma density pro�le transverse to the plasma source in the six-way
cross.

Another pro�le measurement is made in the six-way cross, but along the axis of the
plasma source (Figure 5-11). In this direction, the plasma has a steep gradient away
from the antenna because of the short plasma skin depth (∼ 1 cm). Consequently,
the plasma density drops by two orders-of-magnitude across the cross diameter in this
direction. In future work, a weak magnetic �eld might be used to reduce the density
drop.

Finally, the density at the center of the cross is measured as a function of rf
power. The results, ploted in Figure 5-12, show that the electron density increases
exponentially with rf power. The data point near 3.5 kW is obtained at PPPL, but
since the rf generator at LBNL is limited to 2.5 kW, the highest density presently
available from the rf source in NTX is 5× 1010 cm−3.

In �nal NTX experiments, the rf generator was brought back to its 4-kW power
capability in order to achieve the previously observed densities, and the gas valve was
replaced with a faster one to limit the gas introduced to the NTX vacuum system.
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Figure 5-11: Plasma density in the transverse direction, towards the rf power source,
showing a steep gradient.

Figure 5-12: Electron density in the center of the cross as a function of rf power.
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5.3 Neutralized-drift experiments

An important area of NTX research is studying the e�ects of beam neutralization
on transport. As discussed in Section 5.1, a converging ion beam exiting the �nal-
focus lattice is injected into a 1-m drift section, where neutralization is provided by
a plasma from the metal arc source and the rf plasma source. Both sources deliver
reproducible plasmas with densities up to ten times greater than the beam density,
a su�cient value for a range of neutralization experiments. We have studied the
e�ects of an upstream �plasma plug�, where electrons are extracted from a plasma
and dragged along by the beam potential, as well as the e�ects of the �volumetric
plasma� nearer the focal point, where neutralization is provided along the beam path
just before the focal point.

Experimental �ndings for both neutralization methods have been compared with
the results of LSP [14,15] particle simulations. Using particles extracted from aWARP
simulation as input, we simulate the neutralization process of the focusing beam as it
passes through a plasma, following the beam past its focal point (Figure 5-13). The
simulation domain is 3.8 cm in radius and 130 cm long. The K+ beam is injected
through an open (Neumann) boundary at z =-30 cm and initially has a 2-cm outer
radius, a 25-mA current, and a 300-keV energy. At initialization, the plasma has a
uniform density of electrons and Al+2 ions. It extends radially to the outer wall and
occupies a 10-cm longitudinal region beginning 20 cm after the injection plane. The
3-eV plasma temperature is comparable with the critical energy, 1

2
mev

2
i = 4 eV , a

fact that could a�ect the neutralization process to some extent. Space-charge-limited
emission (SCLE) of cold electrons is permitted where the plasma is in contact with the
outer wall. This boundary enables the re-supply of low-energy electrons to maintain
quasi-neutrality of the plasma during the simulation. Because each impacting beam
ion will stimulate the emission of many electrons, we also permit SCLE of electrons at
the z = 100 cm wall. An electron trap prevents electrons from drifting upstream into
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Figure 5-13: LSP simulation schematic.

the magnetic focusing region. The trap consists of a 1-cm-long ring electrode that is
centered at z=-18.5 cm and negatively biased at 1 kV in the simulation. Finally, the
PIC simulations are collisionless, with no beam stripping or ionization processes.

In the neutralized drift section, WARP3D can be used to model the beam dy-
namics when a simple approximation is applied in which the space charge forces are
uniformly reduced by a neutralization factor, of the order of 95 to 97%, which is a re-
sult obtained from a more detailed neutralized beam transport calculation using LSP
code [15]. LSP models the plasma-beam interaction in detail, while WARP3D is the
code of choice for magnetic lattice beam dynamics. The simplifying approximation
allows us to extrapolate the beam dynamics e�ects in the quadrupole section to the
�nal beam spot.
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Figure 5-14: Beam images for a 255 keV beam measured 1m downstream, transported
through a tube of diameter a) 15 cm and b) 7.6 cm.

5.3.1 Beam transport in vacuum

5.3.1.1 Uncontrolled neutralization

As a preliminary step to characterize beam transport in the NTX �nal-focus system, a
255-keV beam is injected into a large (15-cm) diameter pipe from the exit of the �nal
focus magnet to a diagnostic box 1 m downstream; a large diameter pipe ensures that
electron emission from the walls is negligible. The beam is also transported through
a nominal 7.6-cm diameter pipe corresponding to the actual neutralized drift section
containing the MEVVA plasma plug system. Figure 5-14 shows beam images for
unneutralized beam transported through (a) 15 cm diameter tube and (b) 7.6 cm
diameter tube. A smaller spot size, roughly 50% less in diameter, is measured for
transport in the 7.6 cm diameter tube, which does not agree well with the calculated
beam transport in a vacuum. This smaller beam size is due to the capture by the
beam of free electrons from the wall that partially neutralize the beam.
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5.3.1.2 Control technique of unwanted neutralization

Ions from the poorly matched beam head and halo ions in the main pulse of the
beam can strike the outer wall of the transport tube. A single ion impact can produce
thousands of secondary electrons depending on the energy and angle of incidence with
ions of grazing-angle incidence producing the largest secondary electron yield. Only
a small fraction of the beam ions striking the wall are needed to provide a space-
charge limited supply of electrons from the wall. If the secondary electrons are not
stopped, they are attracted to the beam potential and can provide some degree of
beam neutralization.

Halo scrape o� will be drastically reduced using the 15cm pipe. Also for larger
wall radius, the wall electrons can spend only a small fraction of their time within
the beam. The electrons are moving at their greatest velocity while passing through
the beam further decreasing their beam neutralization. Thus, the neutralization
fraction from these electrons will scale no better than the ratio of the beam to wall
radii. A wall radius comparable to that of the beam will provide some sizable degree
of neutralization and prevent the observation of expected vacuum transport. The
secondary electrons are produced with mean energy roughly that of the ionization
potential of the impacted wall atoms � typically 10 eV. The distribution of electrons
in ionization events also has a high energy tail falling o� as the square of the energy.
Thus, if we place a highly transparent wire mesh sleeve within the drift tube and bias
it with potential � 10 eV, we can expect to collect these secondary electrons and
prevent them from moving into the beam path. Given a positive potential, electrons
produced on the mesh itself will tend to be trapped near the mesh. Figure 5-15 shows
a high beam transference cylindrical tube shape metal mesh that is inserted into the
7.6 cm beam tube. The thickness and longitudinal length of the mesh are 2.2 mm and
58.2 cm, respectively. Outer and inner diameters of the mesh tube are 6.3 cm and
5.88 cm, respectively, thus maintaining better than a 5 mm radial electrical isolation
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Figure 5-15: Cylindrical metal mesh of outer diameter 6.3 cm is installed inside a 7.6
cm diameter beam drift tube.

from the beam tube wall.
Figure 5-16 shows the measured beam parameters for varying mesh bias. In Figure

5-16(a), the lower line with solid circles shows that a beam diameter of 2.4 cm is
measured with 0 V across the mesh bias for 255-keV beam energy. A beam diameter
of roughly 3.75 cm is also measured by applying ± 500 V across the mesh for the
same beam energy, shown by lines of solid diamonds and cross symbols, respectively.
The line with hollow circles shows a measured beam diameter of 3.75 cm using a mesh
bias of +250 V. A larger beam diameter of 4 cm is measured with a mesh bias of ±
1 keV for the same 255-keV beam energy, as shown by lines of hollow diamond and
solid triangle symbols in the �gure. The positive 250 V bias on the mesh provides
a smooth trend of beam shape, regardless of beam energies in the range of 245 to
300 keV. Beam diameter measurement by varying beam energies is performed in a 15
cm diameter vacuum tube separately, where the possibility of a wall-electron e�ect
is negligible. There is no mesh or plasma inside the tube that could in�uence the
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measurements of ion beam transport in vacuum conditions. Figure 5-16(c) shows a
comparison of beam diameters for transport through the 7.6 cm diameter tube with
the mesh inserted with a bias of +250 V, and the 15-cm diameter vacuum tube.
The dotted lines with hollow circles and triangles represent beam diameters that are
measured in the x and y axis, respectively, for a beam of energies 240 to 310 keV
transported through the 15-cm diameter tube. Diameters of 4.53 cm, 4.0 cm, and
2.68 cm are measured in the x-axis for the beam of energies 259 keV, 268 keV and
298 keV, respectively. On the other hand, the lines with solid circles and triangles
represent beam diameters that are measured in the x and y axis, respectively, for a
beam of energies 244 keV to 290 keV transported through the 7.6 cm diameter tube.
Beam diameters of 3.76 cm, 3.15 cm, and 2.41 cm are measured in the x-axis for
the beam of 255 keV, 268 keV and 287 keV, respectively. These are the end-to-end
measurements of a beam image, without the deduction of any cut o� value that is used
for statistical error reduction in Section 5.3.2. For a 255-keV beam, a di�erence of 6
mm in beam diameter is measured between the two cases. This di�erence is smaller
for a more energetic beam. For example, for a 288-keV beam, a di�erence of 2 mm
in diameter is measured for the two cases. For a higher energy beam (say 300 keV),
the radial distance of the beam from the wall is larger than the lower energy beam
(255 keV) and neutralization is insigni�cant. By using the mesh and an appropriate
voltage across it, we still achieve a slightly smaller size than "expected" for an un-
neutralized beam. The di�erence in the two cases, as we inferred, is due to the fact
that the 58.2 cm mesh liner in the 7.6 cm diameter tube is not long enough to cover
the entire 1-m long drift tube. As a result, partial neutralization occurrs beyond
the ends of the mesh. However, the mesh is a signi�cant development in overcoming
uncontrolled neutralization of wall electrons.

Currents corresponding to positive and negative voltages across the mesh are
measured during the 255 keV beam pulse. Figure 5-17 shows the experimental data

169



Figure 5-16: Beam diameters corresponding to beam energies as measured in the (a)
x-axis and (b) y-axis by varying mesh bias, and (c) a comparison of beam size for a
255-keV beam transported through a 15-cm tube (dotted lines for the x-y axis) and
a mesh included 7.6 cm diameter tube (solid lines for the x-y axis) with bias 250 V.
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of currents measured in the mesh. A negative current of 6.56 mA is measured at a zero
potential across the mesh, which shows that secondary or wall electrons movement
is present and only those electrons which directly strike the mesh wire are measured
with uncollected electrons remaining around the mesh. A positive 50 V potential is
applied across the mesh to collect these all electrons, a current of negative 30.72 mA is
measured. Voltages such as negative 250 V and negative 500 V are also applied to the
mesh; however, no signi�cant current is measured in these cases. It is inferred that a
higher negative potential, like negative 250 V, across the mesh is able to completely
stop radial inward and outward motion of electrons, but leaving uncollected electrons.
Therefore, collection of all the electrons around the mesh, using a +50 V potential, is
a better choice. However, the presence of a higher mesh bias has some e�ect on the
physics of plasma neutralization. For a positive potential, plasma electrons initially
accelerated up to the beam velocity as they leave the plasma, are then accelerated up
to an energy corresponding the mesh bias. The quiescent co-moving plasma electrons
now have a velocity many times that of the beam. As the mesh potential increases,
these electrons become ine�cient at neutralizing the beam potential and a larger
beam focal spot is expected. For a negative potential, the plasma plug electrons are
largely excluded from the beam in the region of the mesh yielding no neutralization.

Figure 5-18 shows the measured beam pro�les for seven values of energy between
240 and 310 keV, measured 1 m downstream from the exit of the �nal-focus system.
The corresponding pro�les from the WARP simulations are also displayed in the
�gure, and we �nd good qualitative agreement with the measured pro�les. The ex-
perimental results are obtained using a su�ciently large beam pipe (15 cm diameter)
for �nal transport to ensure that electron emission from the walls is negligible and
a 7.6-cm diameter pipe corresponding to the actual neutralized drift section contain-
ing the MEVVA plasma plug system. With the nominal 7-cm diameter beam pipe,
the spot sizes initially measured are signi�cantly smaller, due to the capture of free
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Figure 5-17: Current in the mesh as the mesh bias is varied during a 255-keV beam
pulse.

electrons from the wall. This anomalous behavior, however, disappeared when the
walls are screened by a negatively charged mesh that trapped these electrons. These
pro�les show that by using the mesh bias, the measured beam pro�les are in general
agreement with the WARP calculations for vacuum transport.

5.3.2 Neutralized transport

Non-neutralized and neutralized beams are monitored at the end of a 1 m long neu-
tralization drift section on a glass or ceramic (96% alumina) scintillator. Charge
neutralization of this scintillator is provided by a high-transparency (80�90% trans-
mission) metallic mesh placed on or near the surface of the scintillator. By applying a
negative bias to the mesh, stray external electrons are decelerated and de�ected away
from the scintillator, limiting their contribution to the optical image to negligible lev-
els. Time-resolved beam-induced images on the scintillator screen are captured with
a Roper Scienti�c gated intensi�ed CCD camera viewing the scintillator through a
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Figure 5-18: Beam pro�les for vacuum transport as function of increasing energy
(240 keV to 310 keV) from (a) WARP calculations (b) experimental measurements
for transport through a 15 cm diameter tube, and (c) experimental measurements for
transport through a 7.6 cm diameter tube using mesh bias of +1 keV.
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vacuum window, and images are processed using the public-domain program ImageJ.

The low emittance (ε ∼ 30π−mm-mr) of the beam at the entrance to the neutral-
ization region allows the beam to be focused to a small spot size of 1�2 mm radius
at the focal point for neutralized ballistic transport. Figure 5-19 shows beam images
of a neutralization experiment: (a) non neutralized, (b) plasma plug, i.e. MEVVA-
plasma-neutralized, and (c) plasma plug and RF volume plasma neutralized. A size
of 27 mm at Full-Width-Half-Maximum (FWHM) is measured for a non-neutralized
condition. The beam radius of 14.7 mm in Figure 5-19(a) is measured using 1/e
lower cuto� statistical deduction from the peak �uence of beam imaged with ImageJ.
A size of 2.83 mm at FWHM is measured for the MEVVA plug neutralization and
its radius of 1.6 mm is measured using the same method. A spot size of 2.14 mm
at FWHM and 1.3 mm neutralized beam radius are measured for MEVVA plug and
volume plasma neutralization. A better-than-90% beam size reduction is measured
using plasma sources. Neutralization with a lower perveance, 6 mA beam current
using 1 cm aperture instead of 2 cm diameter aperture, is also performed.

LSP simulations of NTX including plasma plug and volumetric neutralization are
performed starting from beam initial conditions at the entrance to the neutralization
region. In one series of LSP simulations, shown in Figure 5-20, the initial condition
is the �nal phase-space distribution as calculated by WARP for the transport of the
NTX beam from the gun to the exit of the �nal focus system.

There is qualitative agreement with measured spot sizes, but a detailed mea-
surement of the 4-D phase-space distribution at the exit of the �nal-focus section is
essential in order to initialize more realistic simulations of NTX neutralized beam
transport. Figure 5-21(a) shows beam images of experimental data for plasma plug
neutralized (Column 1), plasma plug and RF volume plasma neutralized (Column
2), and complete neutralized using 4D phase space from pinhole scan (Column 3).
Notice that Column 3 shows the �experimental fully neutralized transport� using the
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Figure 5-19: NTX spot-size dependence on the neutralization mechanisms. Beam
images (top row) and density distribution (bottom row) at the focal plane for three
cases of space-charge neutralization for a high perveance (6× 10−4) 24 mA, 254 keV
K+ ion beam: a) non-neutralized, b) plasma plug neutralized, and c) plasma plug
and RF volume plasma neutralized.
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Figure 5-20: Calculated (a) radius and (b) emittance of NTX beam from the WARP-
LSP simulations of neutralization by a plasma plug alone and combined with a volume
plasma near the focal point. The rms focal-spot radius is 1.3 mm with the plug only
and 0.9 mm with both plasmas.

�analog simulation� as discussed in Section 5.3.3. Figure 5-21(b) shows the numerical
simulations of all of these cases. Results of 2 di�erent aperture cases (24 mA, and 6
mA) show that neutralized beam sizes did vary signi�cantly with variable perveance.

Although the experimental focal-spot size and shape agree qualitatively with the
corresponding simulation results, a careful comparison of the radial density pro�les
shows qualitative di�erences. Figure 5-22 shows a comparison of pro�les at the nom-
inal focal point, 1 m beyond the last �nal-focus magnet. The experimental pro�le is
hollow, and there is substantial charge in a halo extending well beyond the calculated
1.5-cm beam edge. In contrast, the LSP simulation gives a pro�le with negligible halo
and a broad density peak at the beam center, providing that we ignore the statisti-
cally insigni�cant values within a 1-mm radius. The calculation uses the same initial
emittance, radius, and convergence angle as the experiment, but it is idealized in as-
suming axisymmetry, neglecting interactions with the background gas, and specifying
an initially Gaussian velocity distribution.
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Figure 5-21: Comparison of experimental (top) and numerical (bottom) results of the
NTX spot-size dependence on the neutralization mechanisms.
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Figure 5-22: Comparison of a radial density pro�le from an unneutralized NTX shot
with a theoretical pro�le (magenta) from an LSP simulation.

5.3.2.1 Beam current

The beam current is measured at the entrance and at the exit of the �nal transport
system with and without a plasma. It is measured using a Faraday cup; the cup is
biased with a +500 V and its internal guard ring is biased with a negative 900 V. An
electron trap is installed in front of the Faraday cup. Figure 5-23 shows beam current
as a function of energy for beam traveling through the neutralization drift section.
All measurements overlap with each other and show 100% beam current transport
in the system. There is no signi�cant beam loss in the drift section, and full beam
current is transported with and without neutralization.

5.3.2.2 Beam focal plane

Variation of the neutralized beam radius with axial position is measured at the di-
agnostic box by varying the scintillator position over a range of 15 cm around the
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Figure 5-23: Measured beam current. The solid circles represent the currents mea-
sured at the entrance of the 1m �nal transport section; the solid diamonds represent
the currents measured at the end of the 1m drift section; and the hollow circles rep-
resent the currents measured when beam is neutralized using the MEVVA plasma
plug.
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Figure 5-24: Axial beam envelope variations in (a) 7.6cm drift tube (mesh with +250
V bias), and (b) theoretical calculation (without mesh).

predicted focal plane. Figure 5-24 shows the axial beam envelope variations in (a)
experiment using the electron supressor mesh with a +250 V bias inside the 7.6 cm
drift tube, and (b) theoretical calculation using LSP. Though the discrepancy in beam
radius is less than a millimeter, this di�erence might be due to the absence of mesh
in the calculation.

5.3.2.3 Energy dependence and head-to-tail variation

The sensitivity of beam optics to small changes in beam energy is evaluated by mea-
suring the beam size as the energy is varied for a given beam slice (Figure 5-25). We
have observed that energy variations of 1% led to reduction of current density by
50%. This experimental result is consistent with numerical simulations.

The beam pattern of the neutralized NTX beam from head-to-tail is also measured
by varying the time delay of the image recording system (Figures 5-26 and 5-27). To
ascertain the head to tail variation of the pulse, a 255-keV beam is transported through
a mesh-less 7.6 cm diameter tube through plasma produced with a 2-keV discharge
potential. Time slices of 100-ns width are recorded with delays between 4.6 µsec and
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Figure 5-25: Spot size as a function of energy as measured in NTX.

12.8 µsec in intervals of 0.2 µsec. It is observed that the beam head and tail have
halos. We infer that the longitudinal forces due to beam space charge increase the
velocity of the beam head but slow down the beam tail. Although the beam radius
is �at for a time delay of 6 µsec to 11 µsec, closer examination shows that the beam
radius variation is of order 0.2 mm; this might be due to shot�to�shot variations of
the Marx voltage, or variations of charge accumulation in the capacitor tank of the
high voltage system of the MEVVA plasma plug.

5.3.2.4 Spot size dependence on plasma parameters

A series of idealized axisymmetric LSP simulations indicates that plasma neutraliza-
tion should be fairly insensitive to variations in plasma parameters. These simulations
use an idealized Gaussian velocity distribution, with the same emittance used above.
A comparison between experiment and theory of the radial distribution pro�le at
focus is shown in Figure 5-28. The basic size of the beam spot is similar in both
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Figure 5-26: Beam images from head-to-tail taken at the focal plane, showing blow
up of the beam head and tail.
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Figure 5-27: Spot size variation from head-to-tail measured at the focal plane, showing
blow up of the beam head and tail.

cases with di�erences attributed to a halo due to nonlinear focusing seen in the ex-
perimental curve. Simulations show that if electrical connection is maintained to the
chamber wall through electron SCLE, the beam spot shows little variation for plasma
densities ranging from 3 × 108�3 × 1010 cm−3 for an initial plasma temperature of 3
eV. Without electron emission from the wall, the plasma plug charged up due to loss
of electrons and the spot size degraded in time, particularly for smaller plasma den-
sities. For a 6-eV initial plasma temperature, which is greater than 1

2
mev

2
i , the beam

spot size is roughly 50% larger than the case with a 3-eV plasma. The sensitivity of
the beam spot to the incoming beam emittance is calculated to be weak, with only a
30% spot-size variation for a factor-of-three change in emittance. This low sensitivity
to emittance indicates that charge neutralization in the NTX experiment should be
quite close to the 96% value seen in simulations and should not be in�uenced by
details in the emittance.
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Figure 5-28: Comparison of radial density pro�les from two plasma-neutralized NTX
shots with a theoretical pro�le (magenta) from an LSP simulation.

The neutralized beam radius is also measured as a function of the MEVVA plasma
discharge voltage. Figure 5-29 shows (a) beam radius vs. plasma discharge voltage,
and (b) comparison between the experiment and LSP simulations of the radial distri-
bution pro�le. The basic size of the beam spot is similar in both cases (experiments
and theory) with di�erences attributed to a halo due to nonlinear focusing seen in
the experimental curve. Simulations show that if electrical connection is maintained
to the pipe wall through electron space-charge-limited emission (SCLE), the beam
spot shows little variation for plasma densities ranging from 3 × 108�3 × 1010 cm−3

for an initial plasma temperature of 3-eV. For a 6-eV initial plasma temperature,
which is greater than 1

2
mev

2
i , the beam spot size is roughly 50% larger than the case

with 3-eV plasma (Figure 5-29a). The sensitivity of the beam spot to incoming beam
emittance is calculated to be weak with only a 30% spot-size variation for a factor
of three change in emittance. This low sensitivity to emittance indicates that charge
neutralization in the NTX experiment is close to that 96% value seen in simulations,
and thereby is not in�uenced by details in the emittance.
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Figure 5-29: (a) Neutralized beam radius vs. plasma discharge voltage, and (b)
comparison between experimental and theoretical radial distribution pro�les.

5.3.2.5 Geometric aberrations

The goal of a �nal focus experiment is to obtain the minimal spot radius. Eq. (4.2)
suggests that one could reduce the spot size by increasing the convergence angle,
provided that the emittance is not signi�cantly increased. In general, as the angle is
increased, the beam envelope goes through larger excursions in the magnetic lattice,
which in turn leads to increase in emittance through higher order (particularly third
order) aberrations. The distortion of phase space due to geometric aberrations has
been studied numerically. In our experiment, we see the same phase-space distortions,
leading to increased spot size with large angles. Both code and experiment predict
minimum spot radius at ∼15 mrad (Figure 5-30). Eq. (4.6) predicts a monotonically
increasing spot size as the convergence angle is varied. In the experiments, however,
the results are complicated by non optimal entrance conditions from the apertured
source which is the same for the di�erent magnet tunes. In fact, for the NTX lattice
and �xed entrance conditions, the emittance growth along the lattice may be larger
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Figure 5-30: Spot size as function of convergence angle as measured in NTX.

for smaller convergence angles.

5.3.2.6 Spot size dependence on perveance.

Finally, we consider variations of perveance. In general, we expect the geometric
aberrations to be less signi�cant for lower perveance beams. This is true if the �nal
focus lattice is matched to the beam perveance; it is always possible to design a
�nal focus system for a lower perveance beam that will be less a�ected by geometric
aberrations. The NTX lattice is designed for the 25 mA potassium beam at 300 keV,
with perveance Q ∼ 0.0006.

Figure 5-31 shows the spot size dependence on perveance by comparing the beam
images at the focal plane for a 264 keV beam that has been apertured to 25 mA and
6 mA, respectively, and that are transported through the �nal focus system using the
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Figure 5-31: Spot size dependence on perveance as measured in NTX.

same quadrupole �elds. There is a large reduction in spot size for the lower perveance
beam.

It is important to point out that the low emittance (∼25π-mm-mr unnormalized)
of the beam at the entrance to the neutralized region allows for the beam to be
focused to a small spot size (1�2 mm radius) at the focal plane for neutralized ballistic
transport. Furthermore, Faraday cup measurements of the beam current at entrance
and exit of the �nal focus system have shown negligible beam loss along the transport
channel.

5.3.3 �Analog simulation� of fully neutralized beam transport

As discussed in Section 2.4.2, we have developed an optical technique to measure the
4-D phase-space distribution of the beam. The phase space distribution f(x, y, x′, y′)

will be measured by scanning the beam with a 0.5-mm diameter pinhole and letting
the transmitted beamlet travel about 1 m before striking the scintillator. The pinhole
position de�nes the coordinates x and y, and from the image, we can extract the
density distribution of x′ and y′. This technique is used to measure the detailed
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Figure 5-32: Ballistic propagation of the fully neutralized NTX beam by propagating
the 4-D phase space down to the focal plane. Images from top left to bottom right
correspond to beam pro�le at 5 cm steps starting from the pinhole plane and ending
at the focal plane.

structure of the phase space distribution.
The same diagnostic system can be used to simulate the e�ect of full neutralization

on a beam, since each beamlet going through a pinhole only carries the information
about the phase space distribution at a given location without being perturbed by
the space charge of the full beam. The superposition of all pinhole images at a given
location can be compared with a beam-transport calculation where the space charge
is turned o� from the pinhole-scan plane to the focal plane (Figure 5-32).

A comparison between this analog simulation and a WARP run with the space-
charge �eld arti�cially suppressed is shown in Figure 5-33. The agreement of the
focal-spot radius is seen to be excellent, despite di�erences in azimuthal structure.
This agreement indicates that the NTX emittance is low enough after focusing to
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Figure 5-33: Analog (pinhole) simulation (left) and WARP calculation (right) of fully
neutralized NTX beam focused to a small spot. Each image box is a 4-cm by 4-cm
square.

produce a focal spot of about 1 mm radius, given adequate neutralization.
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Chapter 6

Conclusions

6.1 Summary

The Neutralized Transport Experiment at LBNL provided the �rst experimental vali-
dation of neutralized ballistic transport of a space-charge-dominated beam. Although
the experiment used a beam that is orders of magnitude lower in current than a driver
for heavy-ion fusion, a careful choice of parameters guarantees that the transport
physics closely matches that of a full-scale system. We produced a very small focal
spot at the end of an integrated beam system consisting of a high brightness injector,
a quadrupole focusing system, and a �nal neutralized drift section. Using a novel
beam aperturing technique we were able to produce a very high brightness ion beam
from conventional alumino silicate ion source. The physics of beam transport through
a magnetic quadrupole system was studied, and we demostrated excellent agreement
between simulations and experiment over a broad parameter regime. The neutralized
drift experiments demonstrated dramatically improved focusing by passing the beam
through a low-density �plasma plug� produced by a metal-arc source, and a second
�volume plasma� near the beam waist. Detailed end�to�end simulations were carried
out in parallel with the experiments, and careful comparisons of the experimental
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�ndings with the results of numerical simulations were presented.
The key question of a �nal focus experiment is what determines the spot size.

We showed from both theory and experiment how to prepare the beam envelope
for �nal neutralized drift. We also studied the e�ects of beam energy variations and
demonstrated the importance of head-to-tail energy uniformity. We studied the higher
order aberrations, in particular the geometric aberrations and their e�ects on the spot
size. Finally, we considered the dependence of spot size on perveance. Overall, the
comparisons between theory and experiment were very good.

In parallel to the transport experiments, two new diagnostic tools were developed.
The �rst, a re�nement of the conventional pepper-pot imaging technique, gave a
detailed time-resolved view of the 4-D transverse phase space for beams that have
good pulse-to-pulse reproducibility. Using this technique to map the 4-D phase-space
distribution at the exit of the NTX �nal-focus system provided the initial conditions
for more realistic simulations of the neutralized-transport experiments. The other
tool was a non-intercepting diagnostic that uses a low-energy electron beam directed
across the NTX beam line to map out the transverse charge distribution of the ion
beam. Both diagnostic techniques provided new information about the structure of
the NTX beam and facilitated our understanding of neutralization physics.

We discussed some possible factors in the experiment which are not included in
the theory, and an attempt to resolve these issues experimentally. In terms of future
experimental work, the most important task is an in-situ measurement of the magnetic
�eld, including all the eddy current e�ects of the pipe and �anges. One additional
unexplained observation has to do with halos in both con�guration and velocity space.
We presented two examples in Figure 4-22 and Figure 4-23, respectively. Numerical
simulations have not been able to account for these halos thus far, and will be the
subject of future studies.
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While we still have a couple of puzzles to resolve, we believe that much has been
learned about the �nal focus magnetic system relevant for a HIF driver. The questions
of how to control energy sweep, design constraints on aberrations and perveance, are
now much better understood as a result of this work. In particular, we have demon-
strated that the close coupling between theory and experiment o�ers an extremely
powerful approach to the study of an integrated beam system.

6.2 Follow-on Experiments and Future research di-

rections

Since the completion of the work associated with this thesis, we have resolved the
halo puzzle. The beam halos were traceable to the imperfections of the NTX source,
occurring in the detailed geometry of the emitter and the anode shroud. The halo
resulting from the imperfections was directly measured at the source exit, which
agreed with numerical simulations.

The issue of the calibration of energy and magnetic �eld has also been resolved. It
turned out that the pulsed magnetic �eld inside the vacuum pipe is reduced by skin-
depth e�ects in the thin stainless vacuum tube. There is also a phase shift between
the �eld in air versus in vacuum. The measured magnetic �eld reduction is su�cient
to account for the energy calibration discrepancy described earlier.

In addition to the transverse beam compression demonstrated in the present work,
we have also completed an experiment in longitudinal beam compression in the pres-
ence of plasma. Longitudinal compression in excess of a factor of 50 was demonstrated
[68].

In the future, we plan to perform experiments to demonstrate simultaneous trans-
verse and longitudinal focusing. The resulting compressed beam will be used for
HEDP studies and ultimately for HIF applications.
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