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Abstract 

A macroscopic fluid model is tleveloped to describe the nonlinear dynamics and collec- 
tive processes in an intense high-current beam propagating in the z-direction through 
a periodic focusing solenoidal field B, ( z  + S) = B, (z), where S is the axial periodicity 
length. The analysis assumes that space-charge effects dominate the effects of ther- 
mal beam emittance, K T ~  >> e&, and is based on the macroscopic moment-Maxwell 
equations, truncated by neglecting the pressure tensor and higher-order moments. 
Here, K = 2NgZ~e2/'ib3m@c2 is the self-field perveance, Ng is the number of parti- 
cles per unit axial length, and Tg is the characteristic beam radius. Assuming a thin 
beam with rg << S, azimuthally symmetric beam equilibria with a/& = 0 = a/% 
are investigated, allowing for an axial modulation of the beam density 72b(T,z )  and 
macroscopic flow velocity Kg(r, z)&.+V&(r, .)@e +V&(T, z)& by the periodic focusing 
field. To illustrate the considerable flexibility of the macroscopic formalism, assuming 
(nearly) uniform axial flow velocity Vg over the beam cross section, beam equilibrium 
properties are calculated for two examples: (a) uniform radial density profile over 
the interval 0 5 T < rg(z), and (b) an infinitesimally thin annular beam centered at 
T = T b ( z ) .  The analysis generally allows for the azimuthal flow velocity Veg(r, z )  to dif- 
fer from the Larmor frequency, and the model is used to calculate the (leading-order) 
correction 6V'g(r, z) to the axial flow velocity for the step-function density profile in 
case (a) above. 
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I. INTRODUCTION 

Periodic focusing accelerators'* have a wide range of applications varying from basic 

scientific research to industrial applications. There is growing interest in developing an 

improved theoretical understanding of the nonlinear dynamics, and stability and transport 

properties of nonneutral charged particle beams in advanced high-current  accelerator^^-^ 

for applications such as heavy ion fusion, tritium production, and nuclear waste treatment. 

Indeed, in many regimes of practical interest, the beam intensity (as measured by the charge 

density and current density) is sufficiently high that self-field effects dominate the thermal 

effects associated with the spread in momentum of the beam particles. A kinetic treatment of 

beam propagation based on the nonlinear Vlasov-Maxwell equations, l y 8 - 1 4  although provid- 

ing a complete description of collective processes, is often difficult to implement analytically. 

It is the purpose of this paper to develop a macroscopic cold-fluid model15 that provides an 

adequate treatment of intense beam propagation through a periodic focusing solenoidal field 

in circumstances where space-charge effects dominate the effects of thermal beam emittance. 

By way of background, kinetic models of intense beam propagation based on the Vlasov- 

Maxwell equations describe the nonlinear evolution of the distribution function fb(x,  p, t )  in 

the phase space (x, p) and the interaction of the beam particles with the average electric and 

magnetic fields, E(x, t )  and B(x, t) .  On the other hand, a macroscopic fluid model of intense 

beam propagation describes the nonlinear evolution of bulk beam properties such as the 

beam density nb(x, t )  = d3p fb and average flow velocity Vb(x, t )  = n;' d3pvfb, and also 

requires ancillary assumptions (such as negligibly small thermal emittance, or an assumed 

equation of state for the pressure tensor) in order to truncate the macroscopic moment 

equations. While not containing the detailed information on the distribution of particles in 

momentum space, a macroscopic fluid model does describe the evolution in configuration 

space of macroscopic quantities such as nb(x, t )  and Vb(x, t) .  Such a macroscopic description 

is intrinsically simpler theoretically than a kinetic model which describes the evolution of 

the distribution function in the phase space (x, p). 
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A third type of theoretical model describing intense beam propagation can also be devel- 

~ p e d ~ ~ , ~ ~ i ~ ~  in which rate equations are dervied for the nonlinear evolution of statistically- 

averaged quantities, such as the center-of-mass beam coordinates, < x > and < y >, the 

mean-square beam radius ( T ~ ) ,  the unnormalized beam emittance E, etc. Here, statistical 

averages < > are over the distribution of beam particles in the accessible phase space. 

Such models for the evolution of statistically-averaged quantities have been developed and 

applied by Sacherer" for the case of an elliptical cross-section beam propagating through 

a periodic quadrupole lattice, and by Lee and Cooper1' for an axisymmetric beam prop- 

agating through a soelnoidal focusing field. Typically, such models also require ancillary 

assumptions for closure of the rate equation, although for the case of a cylindrically sym- 

metric beam propagating through a solenoidal focusing field, closure of the rate equations 

for the mean-square radius, ( r 2 ) ,  does occur for the class of so-called 'self-similar' density 

profiles considered by Lee and C00per.l~ As a general remark, such models for the evolution 

of statistically-averaged quantities do not follow the detailed evolution of the configuration- 

space dependence of the beam density nng(x, t )  and flow velocity Vb(x, t) .  

As noted earlier, a principal purpose of this paper is to develop a macroscopic fluid 

model that describes the nonlinear evolution of an intense nonneutral beam propagating 

through a periodic solenoidal focusing field in the limit of negligibly small thermal emittance 

( e th  + 0). Pedagogical aspects of the paper are presented in Secs. I1 and I11 for the case 

of a thin beam propagating in the z-direction through the applied solenoidal focusing field 

B""(x) described by Eq. (1). For the special case of time-stationary (a/& = 0), azimuthally- 

symmetric (ala6 = 0) flow, the electrostatic self-field potential @(T, z) ,  beam density nb(~, z )  

and average flow velocity components V&(T, z) ,  &b(r, z) ,  and &(r, z )  evolve self-consistently 

according to Eqs. (12) - (16). The stability of the equilibrium profiles described by Eqs. (12) 

- (16) of course can also be investigated in such a cold-fluid model by linearizing Poisson's 

equation (2), the continuity equation (8), and the force-balance equation (8) for small- 

amplitude perturbations about the equilibrium profiles. 

To test the robustness of the macroscopic fluid model, in Sec. IV we specialize to the 
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class of so-called 'fixed-shape' or 'self-similar' density profiles in Eq. (19) first considered 

by Sacherer" for an elliptical cross-section beam in a periodic quadrupole lattice, and by 

Lee and Cooper" for an axisymmetric beam in a solenoidal focusing field. To lowest order, 

we assume K ~ ( T , Z )  N- & = const. over the radial cross section of the beam, and self- 

consistent expressions are obtained for the equilibrium profiles for the electrostatic potential 

@(T,  z )  [Eq. (22)], the radial flow velocity &,(T, z )  [Eq. (21)], and the azimuthal flow velocity 

[Eq. (24)], allowing for average beam rotation (q, # 0) relative to the Larmor frequency. The 

radial force balance equation (9) is used to derive (self-consistently) the envelope equation 

for T ~ ( z )  for two examples: (a) a density profile which is uniform radially over the interval 

0 5 T < T ~ ( z ) ,  and (b) an infinitesimally thin annular beam centered at T = rb(z). As would 

be expected, the envelope equation (28)) derived for the case of a step-function density 

profile, is identical in the zero-thermal-emittance limit (e th  = 0) to the result obtained by 

Chen, et. al.,13 using a kinetic (Vlasov) model of a Kapchinskij-Vladimirskij-like distribution 

that includes average beam rotation relative to the Larmor frequency, and to the envelope 

equation derived by Lee and Cooper1' based on a consideration of the statistically-averaged 

rate equation for the rms beam radius including average beam rotation. Similarly, the 

envelope equation (33) for a thin annular beam agrees with the envelope equation derived 

in Ref. 17 when a similar form is assumed for the density profile. Also importantly, to 

illustrate the versatility of the macroscopic cold-fluid formalism, in Sec. IV the leading-order 

modification 6Vzb to the axial flow velocity Vzb = & + 6Kb is calculated. Specifically, using 

the lowest-order expressions for l & , b b  and & = -aAi/ar obtained for a step-function 

radial density profile, the axial force balance equation (16) is used to calculate the profile 

for SEb to leading order [Eq. (38) and (39)]. 

To summarize, the macroscopic cold-fluid model is found to be robust and flexible, and 

offers several advantages in analytical simplicity relative to a theoretical description based on 

the Vlasov-Maxwell equations. In the regard, it should be emphasized that the equilibrium 

equations (12) - (16) for axisymmetric flow can also be applied in circumstances where the 

density profile nb(r, z )  has more general r-z dependence that that incorporated by the class 
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of fixed-shape density profiles in Eq. (19). Moreover, the cold-fluid formalism developed in 

Secs. I1 and III can also be used to  investigate detailed stability behavior for perturbations 

with 8/88 # o and 8/at # 0. 

11. THEORETICAL MODEL AND ASSUMPTIONS 

We consider a thin, intense charged particle beam with characteristic radius Tb and axial 

velocity & propagating in the z-direction through an applied solenoidal field1 

Here, T = ( x 2  + y2)1/2 is the radial distance from the beam axis, z is the axial coordinate, 

B,(z + S) = B,(z) is the axial magnetic field with fundamental periodicity length S, prime 

denotes derivative with respect to .z, and q, << S is assumed in the thin-beam approxi- 

mation. Consistent with the thin-beam approximation, the transverse kinetic energy of a 

beam particle is assumed to be small in comparison with its axial kinetic energy, and it 

is also assumed that V / y b  = Z:e2Nb/ybmt? << 1, where u is Budker's parameter. Here, 

Nb = 1 dxdynb is the number of charged particles per unit axid length, is the charac- 

teristic energy of a beam particle, Zde is the particle charge, m is the rest mass, and c is the 

speed of light in  vacuo. In the electrostatic approximation, the self electric field produced 

by the beam space charge is E" = -V@(z,y ,~ , t ) ,  where the electrostatic potential @ is 

determined self-consistently from Poisson's equation 

In Eq. (2), n b ( x , y , z , t )  is the particle density, and we have approximated V2 N V: = 

6J2/6x2 + d2/6Jy2 in the thin-beam approximation. In addition, the axial beam current, 

ZienbV'b, produces a transverse self-magnetic field, B" = B& + B;ey = V x AZQ,, where 

A:(z, y, z, t )  is determined self-consistently from 
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Here, K ~ ( z ,  y, z, t) is the axial flow velocity. In circumstances where the axial flow velocity 

is approximately uniform over the beam cross section with VZb cv Va = ,&c = const., a 

comparison of Eqs. (2 )  and (3) shows that the self-field potentials, gP and Ai, are related 

by the familiar expression1 A: = ,Ob&. 

In many applications of practical interest, the beam intensity (as measured by the 

charge density and current density) is sufficiently intense that self-field effects dominate 

thermal effects associated with the spread in momentum of the beam particles. A use- 

ful dimensionless measure of the self-field intensity is the self-field perveance’ defined by 

K = (2 /5 f /?~)(Z~e2Nb/mc”) ,  where T b  = (1 - pz)-1/2 is the relativistic mass factor. When- 

ever the beam intensity is sufficiently large that 

the motion of the particles composing the beam can be characterized as approximately 

laminar, and described to good approximation by a macroscopic cold-fluid model. In Eq. (4), 

rb is the characteristic radius of the beam envelope, and 6th is the unnormalized transverse 

thermal e m i t t ~ n c e ~ l ~ ~  defined in terms of rms momentum spread relative to the mean. In 

circumstances where the inequality in Eq. (4) is satisfied, the phase advance 0 is highly 

depressed by self-field effects. 

In the remainder of this paper, consistent with Eq. (4), we develop a macroscopic cold- 

fluid or zero-thermal-emittance model to describe the nonlinear dynamics of the beam.15 

In the six-dimensional phase space (x,p), the distribution function for a cold beam can be 

expressed as 

fb(X, P, t )  = %(X, t)J [P - %(X, t)mVb(x, t)l 9 (5) 

where nb(x, t )  is the density, Pb(x, t )  = yb(x, t)mVb(x, t )  is the momentum of a fluid element, 

and 

1 - Vi(., t)/.”] -li2 = [  
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is the relativistic mass factor of a fluid element. From Eq. ( 5 ) ,  note that the pressure tensor 

t) defined in the usual manner as the average flux relative to the mean of momentum 

relative to the mean is identically zero, i.e., 

The distribution function fb (x ,p , t )  in Eq. ( 5 )  evolves according to the nonlinear Vlasov 

eq~at i0n . l~  Taking successive moments of the Vlasov equation gives for the evolution of 

nb = .f d3pfb and nbybmvb = .f d3ppfb, 

where B” = V x A:&. By virtue of Eq. (7), v . i j b  = 0 and the pressure gradient contribution 

to the force-balance equation (9) vanishes, thereby leading to a closure of the macroscopic 

fluid equations. 

To briefly summarize, for a beam with intense self fields and negligibly small thermal 

emittance [Eq. (4)], Eqs. (2), (3), (8), and (9) provide a closed description of the nonlinear 

evolution of the self-field potentials, @(x ,  t )  and AS(x,  t ) ,  the density nb(x, t ) ,  and the flow 

velocity Vb(x ,  t) .  Indeed, Eqs. (2), (3), (8), and (9) can be used to investigate the detailed 

dynamics of intense beam propagation through a periodic solenoidal focusing field described 

by Eq. (1) for a broad range of system parameters consistent with Eq. (4) and the thin-beam 

approximation described earlier in the paper. Making use of Eqs. (6) and (9), it is readily 

shown that 

which is a statement of energy balance in the present cold-fluid model of beam propagation. 

As expected, whenever d@/dt = 0, total energy (kinetic plus electrostatic potential energy) 
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is conserved. As noted earlier, it is assumed that the beam has large kinematic momen- 

tum directed predominantly in the axial direction. In cylindrical coordinates, we express 

v b ( X , t )  = + V - b &  + (& + 6 V z b ) e z ,  where & = COnSi!., and expand 7 b ( X , t )  for K b ,  

and 6 v , b  small in comparison with v b .  Correct to quadratic order, this gives 

111. FOCUSED EQUILIBRIUM FLOW IN A PERIODIC SOLENOIDAL FIELD 

In the remainder of this article, we specialize to the case of time-stationary flow (a/& = 

0) of azimuthally symmetric (O/OO = 0) beam equilibria, generally allowing for r-and-z 

variations of the beam density n b ( r ,  z), and flow velocity components K b ( r ,  z), &(r, z), and 

V , b ( r , z )  = &, + G V , b ( r , z ) .  As noted earlier, for approximately uniform axial flow velocity 

over the beam cross section it follows from Eqs. (2) and (3) that A:(r, z )  = pa@(r, z), where 

= B;(r,z)60, where 

B," = - P b d @ / a r .  For d/Ot = 0 and a/aO = 0, it then follows from Eqs. (2), (8) and (9) 

that the self-field potential @(r, z),  beam density n b ( T ,  z) ,  and flow velocity components 

= &/c.  In this case, the self-magnetic field is B" = V x 

V r b ( r , Z ) , h b ( r , Z ) ,  and & b ( T , Z )  = & + J & b ( T , z )  solve 

l d  a@ -- T- = - 4 1 r Z , e n b ,  
rOr Or 

l d  d 
r ar a% - - - ( T % K a )  + - ( ( n a h a j  = 0 ,  

and 
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In Eqs. (13) - (16), the axial velocity &b is typically large in magnitude in comparison with 

the transverse components K b  and ha. However, v,ba/ar and &bd/dz are allowed to be of 

the same order. 

In obtaining Eqs. (14) - (16) from Eq. (9), we have expressed B," = -@baqY/ar, and 

Some straightforward algebra shows that made use of Eq. (11) to approximate Tb(x, t) N 

Eq. (15) can be expressed in the equivalent form 

where f l c b ( 2 )  = .&eBz(z)/ybmc is the cyclotron frequency in the axial magnetic field B,(z). 

Note that Eq. (17) is simply a statement of the conservation of canonical angular momentum 

following the motion of a fluid element. Multiplying Eqs. (14), (15), and (16) by x b ,  I&,, 

and V&, respectively, and adding, readily gives the energy conservation relation 

Comparing Eq. (18) with Eq. (10) when a@/% = 0, and making use of v z b  = & -t- SVzb, 

it is clear that Eq. (18) is the expected result to the level of accuracy of the approximate 

expression for Tb(x, t) in Eq. (11). 

To briefly summarize, for a thin beam with intense self fields and negligibly small thermal 

emittance, propagating through a periodic solenoidal focusing field, Eqs. (12) - (16) provide a 

closed description of the equilibrium flow for = 0 and &#f/60 = 0. For determination 

of VOb, note that Eq. (15) can be replaced by Eq. (17). Moreover, either of Eqs. (14) or (16) 

I can be replaced by the energy conservation relation in Eq. (18). 

IV. EXAMPLES OF PERIODICALLY-FOCUSED BEAM EQUILIBRIA 

Evidently, Eqs. (12) - (16) can be used to investigate focused equilibrium flow in a 

periodic solenoidal field for a wide range of system parameters and classes of profiles for the 
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beam density n b  and flow velocity V b .  For our purposes here, we illustrate the application 

of Eqs. (12) - (16) for the simple case where the lowest-order axial flow velocity is uniform 

with b b ( T ,  z )  = & = const., and the density profile n b ( r ,  z )  has the fixed radial shape, which 

is modulated axially, described by16917 

The class of ’fixed-shape’ or ’self-similar’ density profiles in Eq. (19) has previously been 

considered by Sacherer16, with appropriate generalization to the case of an elliptical beam 

and periodic quadrupole lattice, and by Lee and Cooper17 for the case of an axisymmetric 

beam and solenoidal focusing field considered here. Here, the functional form of f ( T / T b )  is 

yet unspecified, Nb = 27r d T T n b ( T ,  z )  = const. is the number of particles per unit axial 

length, and the normalization of f ( T / T b )  is chosen to be SF d X X f ( X )  = 1/2. If, for ex- 

ample, f ( r / r b )  is the unit step function defined by f ( r / r b )  = 1 for 0 < T / r b ( z >  < 1, and 

f ( T / q , )  = 0 for r / r b ( z )  > 1, then the density profile described by Eq. (19) has rectangular 

radial shape with n b  = N b / T ? f ( Z )  for 0 5 T < T b ( z ) .  For general choice of f ( T / T b )  in Eq. (19), 

it is readily shown that the mean-square r a d i u ~ ~ ~ J ~  is ( r2 )  = Nc127rJp d r r 3 n b ( ~ ,  z )  = 

T ; ( Z ) ( ~  J” d X X X 2 f ( X ) ) .  That is, apart from a constant multiplier, T;(Z)  is equal to the 

mean-square radius for general choice of f ( T / T b ) .  

We now proceed with an examination of Eqs. (12) - (16) for the case where b b ( T ,  z )  = 

& = const., and ? z b ( T , z )  has the form given in Eq. (19). First, substituting Eq. (19) and 

x b ( T )  = vb into the continuity equation (13) and integrating from T = 0 to T = T gives 

Therefore, in the region where ng # 0, Eq. (20) readily gives 

for the radial flow velocity. Furthermore, substituting Eq. (19) into Poisson’s equation (12) 

gives for the self-field potential 
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where qP = 0 at T = 0 has been assumed. Note from Eq. (22) that @ = @(r/Tb(z))  for the 

class of density profiles described by Eq. (19). We now make use of Eq. (17), or equivalently 

Eq. (15) ,  to determine the azimuthal flow velocity bb(T,z) .  Substituting Eq. (21) and 

K b  = & into Eq. (17) gives 

For smooth, differentiable G ( T / T ~ ( z ) ) ,  it is readily shown that [ & ( T T t / T b ) a / &  + 
V b a / a z ] G ( ~ / ~ b )  = 0. It therefore follows that the general solution to Eq. (23) can be 

expressed as 

where wbr& = const. (independent of T and z ) ,  and F(T/Tb) is a yet unspecified function. 

Note that the term proportional to F(T/Tb) in Eq. (24) allows the azimuthal beam rotation 

to differ from the Larmor frequency -ficb(2)/2. 

We now turn to the radial force balance equation (14). Substituting Eqs. (21),  (22),  

(24),  and &, = fi into Eq. (14),  some straightforward algebraic manipulation gives 

Here, use has been made of 1 - ,@ = l / T t ,  and has been expressed in terms of rSt,a(z)/2 

and F(r/q,) by means of Eq. (24). Therefore, carrying out the derivative operations in 

Eq. (25) readily gives 
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where n b  = ( N b / m i ) f ( T / T b )  is the beam density. 

The radial force balance equation (26), valid at each value of T and z, relates self- 

consistently the density shape function f ( ~ / ~ b ) ,  the effective rms beam radius T ~ ( z )  [see 

discussion following Eq. (19)], and the (yet unspecified) function F ( T / T ~ ) .  At this writing, 

consistent with the assumptions that the axial velocity profile is uniform (Vrb = Vb) in lowest 

order, and that the density profile has the fixed radial shape at each value of z described by 

Eq. (19), only two solutions for f ( r / ~ b )  have been determined. One corresponds to a step 

function density profile extending from T = 0 to T = ~ b ( z ) .  The other corresponds to a thin 

annular layer centered at T = Tb(z). We discuss these two cases separately. 

Step-Function Density Profile: As a first example, we consider the case where 

In this case, it follows from Eq. (19) that n b ( T ,  z )  = Nb/m;(z)  in the beam interior, and that 

sofir'(") dXXf(X) = r2/2$(2) for 0 5 T < rb(z). Substituting Eq. (27) into Eq. (26), we 

find that Eq. (26) is satisfied for all T and z provided F ( T / T ~ )  = const. (which we take to be 

unity, without loss of generality), and the outer beam radius satisfies the envelope equation 

Here, 2N&e2/Ttm = V t K ,  where K is the self-field permeance defined in the usual man- 

ner. Equation (28) is similar in form to the familiar envelope equation11917 for a Kapchinskij- 

Vladimirskij beam distributions in a periodic solenoidal field, assuming zero transverse ther- 

mal emittance (et\& = 0), and including the effects of an average azimuthal beam rotation13J7 

of wbr~,,/r: relative to the Larmor frequency -Slcb(z)/2. Not surprisingly, the envelope equa- 

tion (28) is identical to the eth = 0 limit of the envelope equation derived using a kinetic 

(Vlasov) model13 of a KV-like distribution that includes beam rotation (wb # 0) in the 

Larmor frame, as well as the corresponding limit (for a step-function density profile) of the 

envelope equation derived by Lee and Cooper17 by examination of the rate equation for the ~ 
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(statistically-averaged) rms beam radius ( T ~ ) ~ ' ~ .  From Eq. (24)) for F ( r / r b )  = 1 we find 

that the angular rotation velocity of the beam can be expressed for 0 5 r < r b ( z )  as 

Note that the term proportional to w ~ r & / r ~ ( z )  in Eq. (28) plays the role of an effective emit- 

tancel contribution to the envelope equation associated with the directed azimuthal motion 

relative to the Larmor frequency -!&b(z)/2. Moreover, the canonical angular momentum of 

In a fluid element is given in terms of the parameter 

particular, note that p @ b ( T b ( z ) ,  z )  = T b m w b r ;  at r = rg(z). 

by &(T)  z )  = T b m f d b r m r  2 2  / T b ( z ) .  2 

Thin Annular Beam: As a second example, we consider the case where the density 

profile corresponds to an infinitesimally thin annulus centered at T = r b ( z )  with 

and 

We substitute Eqs. (30) and (31) into Eq. (26 )  and operate on Eq. (26) with 27rJ," dr . . .. 
Taking F(l )=l  without loss of generality, and making use of 

this operation on Eq. (26) readily gives 

Equation (33) describes the axial modulation of the radius q ( z )  of the annulus by the 

periodic solenoidal field R&(z).  While similar in overall form to the envelope equation (28) 

for a beam with step-function density profile extending from r = 0 to T = T b ( z ) ,  note that 

the final term in Eq. (33) (associated with self-field effects) differs by a factor of two from 

the final term in Eq. (28). This is associated with the fact that the radial self-electric field 

L 
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is E," = -a@/& = 0 for T < ra(z) for the annular beam described by Eq. (30), whereas 

E," = -a@/& = -2NbZier/~,"(z) is non-zero for r < q(Z) for the stepfunction density 

profile in Eq. (27) .  The discontinuity in the radial self-field force when Eq. (26) is integrated 

across the annulus at T = rg(z) then accounts for the difference by a factor of two in the 

self-field terms in Eqs. (28) and (33). While the example of a thin annular beam is not of 

particular interest for the advanced high-current accelerators envisioned for heavy ion fusion 

and tritium production, it does serve to illustrate the power of the macroscopic formalism 

for intense beam propagation developed in this paper. 

Determination of 6Vzb: We now return to the example of the step-function density 

profile considered in Eq. (27) ,  and the corresponding equation for the beam envelope ra(z) 

in Eq. (28), and the expression for the angular velocity in Eq. (29). In deriving these results 

we have assumed that the axial flow velocity is uniform over the beam cross section with 

Vzb = V b  = const. We now make use of the axial force balance equation (16) to calculate 

the leading-order correction to the axial flow velocity. [The energy balance equation (18) 

could also be used for this purpose.] We set V z b  = 6 + 6Vzb on the left-hand side of 

Eq. (16), and make use of Eqs. (21) and (29) to express Ka = 6 r r i ( z ) / r g ( z )  and = 

- R , b ( z ) r / 2 + ~ b r ~ ~ r / q , ~ ( z )  correct to leading order. Furthermore, substituting Eq. (27) into 

Eq. (22) gives qY = -N$'ier2/rb2(z) for 0 5 T < r&). After some algebraic manipulation 

and rearrangement of terms, Eq. (16) then becomes to lowest order 

Here, use has been made of ?ba-2 = 1 - P b 2 ,  and rb(z) solves the nonlinear envelope equa- 

tion (28). By inspection, the particular solution to Eq. (34) is of the form 

(35) 
r2 

J b b  = Vbf(z)Tb20) 

where 
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In obtaining Eqs. (35) and (36), use has been made of [va(rrf,/rg)d/dr+Vbd/dz]r2/r62(z) = 0. 

Multiplying the envelope equation (28) by drb/dz, it is readily shown that 

Substituting Eq. (37) into Eq. (36) and integrating with respect to z, we obtain the closed 

expression 

Here, rb(z) is determined by integrating Eq. (28)  numerically, and the constant in Eq. (38) 

can be evaluated by setting f(z  = 0) = 0 (say). Also keep in mind that Eqs. (35) and (38) 

have been derived for the case where the density profile corresponds to the step-function in 

Eq. (27). 

To summarize, correct to first order, the solution for the axial flow velocity for 0 2 r < 
rb(z) is 

where f(z) is defined in Eq. (38). Note from Eq. (39) that 6Kb = 0 at r = 0, whereas 6Kb is 

largest near the outer edge of the beam. From Eq. (38), the characteristic maximum value 

of 6 V Z b  is 

For example, if rg/S n~ corresponding to a 

very small deviation in the axial flow velocity from the constant value &. For a periodic field 

with Rca(z+S) = &(z), and a matched beam with rb(z+S) = Q,(Z), we note from Eqs. (38) 

and (39) that the modulation of the axial flow is also periodic with 6Vzb(r, z +S) = Sv&(T ,  z )  

at each radial location T over the beam cross section. As a final point regarding Eqs. (38) 

then Eq. (40) gives 16V,bImax N 0.5 x 
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and (39), it is important to note that the expressions for &,,ha and B," = -aAZ/Or are 

only required to lowest order in order to determine the leading-order SV,, from Eq. (16). To 

calculate the next higher-order corrections to Ka,Veb and 6V&, however, it is necessary to 

revisit the Maxwell equation (3) and calculate A: to higher accuracy than A; = pa@, which 

assumes Kb = V, = const. This is accomplished (in an iterative sense) by substituting 

V , a  = &, + SVza into Eq. (3), where 6Ka is the lowest-order correction calculated in Eq. (39), 

thereby permitting a determination of 6B," = 4nZ;er-l10' drT6l/,bnb. 

Properties of Beam Envelope Equation: Finally, for completeness, we examine 

briefly properties of the beam envelope equation (28) for rg(z), derived for the case of the 

step-function density profile in Eq. (27). Scaling Eq. (28) by &-2, the envelope equation for 

T ~ ( Z )  can be expressed in the more familiar form' 

Here, we have introduced the solenoidal focusing coefficient K, ( z )  e [ZieB,(z)/2+,mcV,J2, 

and the self-field perveance K = 2N&e2/T:mV,2. Moreover, &* E w a r & / b  plays the role of 

an unnormalized beam emittance associated with the directed azimuthal motion [the term 

proportional to w i  in Eq. (28)] relative to the Larmor frequency -n,,(z)/2 [see Eq. (29)]. 

In the special case of a uniform solenoidal field with K,(z) = E ,  = const. (independent of 

z ) ,  Eq. ( 4 1 )  can readily be solved for the equilibrium beam radius (denoted by ras) in the 

smooth-beam approximation (d2rb,/ds2 = 0). This gives 

Note that rbs increases as the self-field intensity increases (increasing K), the beam rotation 

increases (increasing &a), or the focusing strength decreases (decreasing Rz). Whenever 

&a = 0, we find from Eq. (42) that = K/R,, corresponding to an exact balance of the 

(defocusing) self-field force and the (focusing) magnetic force on a fluid element. 

The more interesting case of a periodic solenoidal focusing field is illustrated in Figs. 1 

and 2, where K , ( z )  is assumed to have the form of a periodic step-function lattice defined 

(over one lattice period) by 
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where r](< 1) is the fiZZzng factor. Equation (41) has been solved numerically for the case 

of a matched beam with q,(z + S )  = ra(z). Typical numerical results are illustrated in 

Fig. 1 where ~ ( z )  is plotted versus z for the choice of system parameters S& = 2.5, 

r] = 0.5, K = 0.6 x and several values of the rotation parameter G*/S ranging from 

0 to 5 x 1 that the beam envelope is strongly modulated as a 

function of z by the periodic solenoidal field. In addition, as expected, the average beam 

radius i'a = S-l J:;+' dzr b(z) increases as the rotational parameter Gb/S is increased. Figure 

2 shows plots of T b ( z )  versus z for the choice of system parameters s f i  = 2.5, 7 = 0.5, 

G b / s  = 

Evidently, the average beam radius 76 also increases as K is increased. 

Note from Fig. 

and several values of the self-field perveance K ranging from lod4 to 0.6 x 

V. CONCLUSIONS 

In conclusion, a macroscopic cold-fluid model has been developed to describe the proper- 

ties of intense nonneutral beam propagation in a periodic focusing solenoidal field assuming 

that space-charge effects dominate the effects of thermal beam emittance (Kr: >> &). 

The model is found to be robust and flexible, and offers several advantages in analytical 

simplicity relative to a theoretical description based on the Vlasov-Maxwell equations. In 

this regard, it should be emphasized that this cold-fluid formalism can also be applied to 

circumstances where ala0 $: 0 and the equilibrium density profile is not restricted to have 

the simple form in Eq. (19). 
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Figure Captions 
Fig. 1. Plot of the beam envelope T ~ ( z )  versus axial coordinate z obtained numerically 

from Eq. (41) for the choice of periodic step-function lattice in Eq. (43). System parameters 

correspond to S+ = 2.5, 7 = 0.5, K = 0.6 x and &/S = 0.0 (dashed curve), 

2.5 x (solid curve). The quantities T ~ ( z )  and z are scaled 

by the multiplier S-l. The periodic step function at the bottom of the graph represents (in 

arbitrary units) I C ~ ( Z )  in Eq. (43). 

(dotted curve), and 5 x 

Fig. 2. Plot of the beam envelope T b ( z )  versus axial coordinate t obtained numerically 

from Eq. (41) for the choice of periodic step-function lattice in Eq. (43). System parameters 

correspond to S G  = 2.5, q = 0.5, &,Is = 1.0 x (dashed curve), 

3.0 x (solid curve). The quantities rb(z) and z are scaled 

by the multiplier S-l. The periodic step function at the bottom of the graph represents (in 

arbitrary units) /cZ(z) in Eq. (43). 

and K = 1.0 x 

(dotted curve), and 6.0 x 
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