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CONFINEMENT CRITERION FOR A HIGHLY BUNCHED BEAM
Mark Hess and Chiping Chen
Plasma Science and Fusion Center
Massachusetts I ndtitute of Technology
Cambridge, MA 02139
ABSTRACT
The non-reativigic motion is analyzed for a highly bunched beam propagating
through a perfectly conducting cylindrica pipe confined radidly by a congant magnetic
fidd pardld to the conductor axis. In the present analysis, the beam is treated as ether a
thin rod digribution representing a continuous (unbunched) beam or periodic collinear
point charges representing a highly bunched beam. Use is made of a Green's function to
compute the eectrogatic force on the beam due to the induced surface charge in the
conductor wal. By andyzing the Hamiltonian dynamics, a criterion is derived for the

confinement of unbunched and bunched beams. It is shown that for the confinement of

beams with the same charge per unit length, the maximum vaue of the effective sdf-fidd

parameter is 2w’ /w’ @2a/L for a highly bunched beam with a<< L. This vaue is

significantly lower then the Brillouin density limit for an unbunched beem 2w’ /w? =1.

Here a is the radius of the conducting cylinder, and L is the periodic spacing of the
bunches.

PACS: 29.27, 41.85



I Introduction
Confinement and trangport of high-intensity charged- particle beams are important
subjectsin both plasma physics and beam physics 2. It iswell known that for a
continuous, non-neutra, charged-particle beam propageating in a uniform magnetic fied,
the maximum beam density is determined by the so-called Brillouin density limit 3#. For

nonrdativigtic beams, the Brillouin dengity limit corresponds to the condition
2w /wi =1, wherew , ={4pg’n/ nhllz is the nonrelativigtic plasma frequency, and

w , = qB/mcisthe nonrelativistic cyclotron frequency. Although thereisalarge body of
literature on the equilibrium and stability properties of high-intendity continuous non
neutra charged-particle beams, hightintensity bunched beams are rarely discussed in the
literature >

Thereisaneed to gain afundamenta understanding of high-intengity bunched beams
because they are widdly employed in high-power microwave (HPM) sources, such as
klystrons and traveling wave tubes, aswell asin high-intengity particle accelerators such
as highrintengity linacs. In both HPM sources and high-intensity particle accelerators, an
important problem associated with lack of full beam confinement caused by the bunching
of the dectron and ion beam in the direction of beam propagetion is beam loss, through
such mechanisms as beam helo formation 8-2°,

In this paper, we andyze the nonrdativigtic motion of ahighly bunched beam
propagating through a perfectly conducting cylindrical pipe confined radidly by a
congtant magnetic fidd pardle to the conductor axis. In the present andyss, the beam is
treated as either athin rod digtribution representing a continuous (unbunched) beam or

periodic collinear point charges representing a highly bunched beam. Useis made of the



Green's function to compute the el ectrostatic force on the beam due to the induced
surface charge in the conductor wall. From Hamilton's equations, the radia phase space
is studied for both unbunched and bunched beams. In generd, the radia phase space
contains both closed orbits (i.e., trapped particle orbits) and untrapped orbits (i.e., orbits
which intersect the conductor wall) a sufficiently low beam densities, whereas only
untrapped orbits exist at sufficiently high beam dengties. By determining the conditions
for the disgppearance of trapped particle orbits, a criterion for the confinement of a highly
bunched beam is derived. It is shown thét for the confinement of beams with the same

charge per unit length, the maximum vaue of the effective sdf-fidd parameter is
2w’ /w? @2a/ L for ahighly bunched beamwith a << L, where a isthe raius of the
conducting cylinder and L isthe periodic spacing of the bunches. Thisresult is
significantly lower then the Brillovin density limit 2w? /w? = 1for an unbunched beam.
The paper is organized asfollows. In Sec. 11, a Green's function mode is
presented for unbunched and bunched beams, and the eectrodtatic field produced by the
induced surface charge is computed. In Sec. 111, the Hamiltonian dynamics of the beam
isgtudied. In Sec. IV, acriterion is derived for the confinement of unbunched and

bunched beams. Discussions and conclusonsarein Sec. V and VI, respectively.



I1. Green’s Function Description of Space Charge

The sysems we are analyzing consst of periodic gpace chargein an infinite perfectly
conducting cylinder, which is grounded, as shown in Fig. 1. In particular, we investigate
the dynamics of two types of periodic space charge. Onetypeisauniform rod of charge,
shown in Fg. 1(a) representing an unbunched beam. Ancther type isacollinear
digtribution of charges equaly spaced by adistance, L, shown in Fig. 1(b) representing a
highly bunched beam. The radius of the cylinder is a, and the distance from the axis that
the space chargeisdisplaced isr. We assume that there exists an gpplied uniform
magnetic fidd B = B&,, and &, denotes the unit vector paralldl to the axis of the
conductor. Physicdly the 2-D case isrecovered from the 3-D case by taking the limit

a/L® ¥ for afixed charge dengty.

The presence of the periodic space charge induces a charge density, s, on the surface
of the conductor. The induced surface charge provides an eectrostatic force on the space
charge. We assume that the transverse velocity of the space chargeis sufficiently smdll
compared to the speed of light, hence only the e ectrostatic force from the conducting
wall and the applied magnetic force are non-negligible in the system.

In order to compute the induced surface charge and the ectrogtatic force, we first
formulate a Green' s function, which is the eectrodatic potentid insde the entire cylinder
for agiven digtribution of unit charge(s). In cgs units, the Green’s function, G, sdtisfies
the Laplace s equation,

N2G = - 4pr % - Xcg (1)
where the primed coordinates denote the position of the charge(s) and the unprimed

coordinates denote the point of observation. For the 2-D rod of charge,



rb)?- th:?ldbr-rcgdbq-qﬂg )

while for the 3-D collinear digtribution,
rb)?- T«@:?ldbr - rc@dbq- q(@nédbz- z¢- nLg. ©)

where d[}x{ isthe Dirac d-function.

The Green's function for both distributions satisfies three other criteria it must be
both rotationdly invariant by 2p and trandationdly invariant by nL in the unprimed

coordinates, and the function must be zero at the conductor (Dirichlet condition), i.e.

= G|
|q +2p q

|z+nL - G|z (4)
G, =0

A solution to (1) can be formed by expanding in terms of eigenfunctions of Laplace's

equation in cylindrical coordinates. For the 3-D case, we find the solution 11+ 12

2 & % oo iheog LN . .
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where
f:2_r’ f :—Zpr(’ 2:2’ 7 :_sz(’ a:@’ (6)
L L L L L

and the notationr;b<g represents the greater(lesser) of ¢ and f«. Smplification of (5) is

possible by summing over then = 0 terms, and combining the n < 0 terms with their

positive counterparts yielding,
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where G,p represents the solution of (1) for the 2-D rod digtribution. Gop isgiven by

A A 2 A A
G zlnMa2+b>r</ all - 2f co qﬂgg ®

% 2f 1, coqu -qd] a
whichiswel known *3
Since the Green' s function represents the electrodtatic potentia of aunit charge, we
can reedily cdculate the eectric fidd at the surface of the wall and the induced surface

charge density, s, usng the rdation

s = surface — surface - (9)

where 1 denotes the unit vector perpendicular to the surface IA=- érg and Eisthe
dectricfidd. C isafactor which depends on whether we are solving the 2-D or 3-D
problem. For the 3-D problem, C isequd to g, the vdue of each individua charge. For
the 2-D problem, C isequd to | , the charge per unit length of the rod.

For the 2-D casg, the induced surface charge density is

I a’-r¢ H | .
=- ! =- , 10
Sy a”f@-ZaMx:oqu-q'QQ a2 (10)

while for the 3-D case we have,

A 2 ¥ . . I A
0= 2 1 § ool Z@]‘H
(11)
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In deriving (11), use has been made of the Wronskian, I [x]K dx]- 1 @x]K Ix] = - 1/x.
We are now in a position to compute the eectric field, E=" , which is exerted on the
charge distribution inside the conductor by the induced surface charge. Because of the
system's symmetry inthe §, and &, directions, the electric field at the charge distribution
canonly beinthe & direction. Since the sign of the surface charge is opposite to that of
the internal charges, the force must be atractive. E*' can be obtained by integrating the
differentia dectric fidd vector, evaluated at the charge distribution location, over the

entire conductor,

Ew'fbrcg: ! A (12)

- 3
surface |r ¢ rs|
r, isthe vector measured from the central axis of the conductor to the point of the

differentia charge. Aswill be demongrated in the Appendix,

elrg=2Lf e ], 3

for the 2-D case, and

L2 la2-reh 12 & (b I Ina )
16pq & & nl, Infdi @nr dK Inal
i aa | Illl]nag

for the 3-D sysem.



[11. Hamiltonian Dynamics
We can investigate the radia dynamics of one rod of charge (2-D) or one string of
charges (3-D) interacting with its self-fidd (14) and a constant gpplied magnetic field,
B =Bé,. Inthissystem, there are no forcesin the longitudina direction. Therefore we
may describe Al of the dynamics usng a Hamiltonian in the radid and azimuthd

directions and set v, = Owithout loss of generdity. In particular, the Hamiltonian for
tranverse maotion is given by,

_ 1 aAl iﬁ _%152 i
H_meﬁa T‘Q iz & c E+qf (19

where P isthe canonicd momentum, A= %e} is the vector potentia, and

f = Z E= dr (16)

0

For the 2-D system, wecan set m=r L wherer isthe massdendty of therod, and
g =1 L. Dividing by L onboth sides of (15) yidds a Hamiltonian per unit length, which
correctly describesthe 2-D dynamics. Applying Hamilton's equationsto (15), givesthe

following st of normalized equetions:

d_rzA ’ dR’:Q_r_'_XEself

da ' a (17)
d_B , & _,

dt  f? dt

where normalized variables and parameters are defined by



(18)

and w |_ represents the Larmor frequency. From (17), it is obvious that the canonica
angular momentum is conserved. Combining the first two equationsin (17), and
denoting initia conditions with a subscript O, we can find an expression relating the

canonica radid momentum with the radia position,

P=x/P2+ beog- beg (19)

where F represents an effective potentid energy, and is given by,

If)Z rf.\2
F(rA):?‘l—+rA2+xIn 1- (20)

a?
for the 2-D casewhile

n_ P E fzé & Kjbna_q . ¥ ¥ Klna A
—_q 2 I 2 _ | 2
F(F) o2 +f°+xInyl 32 xXa 2 nagIobnrg xa a ] nagI,bnrg (20

n=1 n=1 1=1
for the 3-D case. Making use of the asymptotic properties of the modified Bessd
functions it is reedily shown that in the limit a/L ® ¥, F[#( in (21) for the 3-D case
approachesto Fl g in (20) for the 2-D case. Therefore, the andyss of confinement in

the 2-D system will be fully recovered inthe 3-D andysisinthe a/L = ¥ limit.
Figures 2(a) and 2(b) showF[f g plotted for two different sets of values of £x, I5q] for

the 2-D system. There are two possible behaviors for this function to have. In Fig. 2(a),
thereisakink (i.e. the function has one local minimum and one locd maximum), while

for Fig. 2(b) the function is monotonically decreesing. A function, FIf(| , with akink



leads to aradial phase space fr, FE] , asisillugrated in Fig. 3(a), which contains both

trapped and untrapped particle orbits. An untrapped particle orbit will result in the
particle eventudly being logt to the conductor wall, whereas a trapped orbit corresponds
to a particle confined inside of the perfectly conducting cylinder. A monotonicaly
decreasing function asin Fig. 2(b), will produce a phase space such as Fig. 3(b), which
only contains untrapped particle orbits.

To illusrate the 3-D effects (i.e. effects of beam bunching), we compare the phase

gpace for the 3-D casein Figs. 4(a) and 4(b) with the 2-D case shown inFig. 3. In
particular, 4(a), which has only untrapped orhbits, has the same x and I% vauesas 3(a),

illugtrating the added effect of the ectric fied in the 3-D regime. However, trapped

particle orbits do exist at lower vaues of x such asfor thevadue of x shownin Fig. 4(a).

10



V. Conditionsfor Confinement

The complete criterion for trapped particle orbitsis threefold, @) F If§ g must have a
kink, b) theinitia particle radius must be chosen between the loca maximum of Fng
and the other point on Fle g corresponding to the same vaue, and ) the initid radia
momentum must be sufficiently small, such that

B2 £ Flie,) - FF (22)

The most important of the three criteriafor trapped particle orbitsisthe first. We

therefore determine the region in parameter space fa ,x, P ] space for both the 2-D and

3-D systems, such that ang has akink. In order to find this criterion for F[)fg, i.e that
trapped particle orbits may exist, we must look for the conditions such that
F &) = Fdir] =0, where F&r{ = dFlF(/ar and Fdlr] = d2Fr{/dr?. Thisrepresents

that trandtion point between Flr g being monotonic and non-monatonic.

A. Confinement for the 2-D System
Itisevidert in (20) thet the only increesing term in F)¢ | isthe £2 term and all other

terms are decreasing. When x = 0, gpplying the trangtion condition F(ﬂfg = Fmﬂfg =0
yields ‘If;‘ =a’a f =a forboth systems. However, when F}‘ =0, it falowsfrom (20)
that F)f{ = 2 +xIn{1- #2/a2ll. Expanding FIF] neer £ =0 yields FlIf] @?1- x /a [l

So F{{ will not be monotonic at # =0 for sufficiently small P, when the coefficient of

11



the quadratic term is pogitive (i.e. when x /a 2 <1). Therefore, the necessary conditions

for F(] to have akink are‘l%‘ <a® and x/a’® <1.
Manipulating the equation F(ﬂfgzo and letting y =af , wefind that

y® +n- 4y* +(1- y?In? =0,

(23)

where m= F’z/a2 and n =x/a?. Because 0<y<1 (0<f <a ), wecan further smplify

(23) by letting z=y?, and obtain
GOzgo 22+l - ]gz2 +01- zgm2 =0,
where 0< z<1. Notethat GDdJ =nt >0 and Gnilg=x >0.
It is straightforward to show that G[ng has precisely one zero when the trangtion
point occurs. This Satement is equivalent to sating that the minimum of G[]zg must be

equd to zero, and that the minimum must occur between 0 and 1 for trapping to occur.
These conditions yidd

3Zriin + 20“ - ]'gzmin - nf = O’

where zqi, istheminimum of G.
Subdtituting (26) into (27) and solving for mwith thead of (25) yields two possible
solutions,
nf=nt, nf=nt

where

(24)

(25)

(26)

(27)

(28)



8nt =27 - 1h1- n{- 1 n(? i\/627- 11- n{- 1 ngzj2 - 6d1- nf. (29)

However, theinequdity (26) yidds, nt < 2n + 1, and by graphica inspection only
nt < nt ispossble. Wefind that for the 2-D system, the following inequality must be

satisfied for trapped particle orbits to occur,

8n? £27- 1801.- n{- D1 nf - \/927- 18l n- I ngzjz- 6al1- " 30

Note that snce mandn are both independent of L, (30) isaso independent of L. Equation
(30) isplotted later in Fig. 5interms of normdized R, and the effective plasma

frequency, as we compare the 2-D case with the 3-D case.

Since the effective dendity of particles for both sysemsisgivenby n= CpaZLh'l, we
canrelate x/a* to the effective plasma frequency w | = C4pnq2/n'h]/2 (Where q =1 L),
and the cyclotron frequency w , = gB/mc by x/a ® = 2w’ /w? , whichisthe familiar seif-
field parameter. As shown in Fg. 5, the maximum of the salf-field parameter occurs at
‘ P ‘ =0, and the maximum valueis 2w’ /w2 =1. Therefore, the criterion for the
confinement is

2w? /w2 £1. (31)

Note that w2 =w?/2 correspondsto the Brillouin density limit * *.

B. Confinement for the 3-D System

For the 3-D systemwhenl?gI =0, we can expand (21) near ¥ =0 and find that the

lowest order non-congtant term, the quadratic term, will be positive when

13



¥

1- x/a?- xg n’ Kylha +ﬁ[?ﬁg 30. (32)
n=1 Ionag I, nag

By utilizing aformularelated to the Wronskian, Im[]zg Km+1[]zg+ Im+1Ungm[]zg =1z, we

cansmplify (32) to

X £ a . (33)

The upper bound on the self-field parameter for the 3-D system also occurs at
‘If;‘ =0; hence, the criterion for confinement is

w32 1
p
;£ o : (34)

¥
o

¢ 1+aﬂ—m
e lounayl ina

Fig. 5illustrates afew of the criticd trandtion curvesin anormdized B, and

w

2w? /w? space. In obtaining the resuitsin Fig. 5, we use Newton's method to

simultaneously solve the equations, F @ = Fdll] =0 for fixed valuesof  anda. Seed
vauesaregiventox and IfgI , and convergence of these vauestypicaly occurs within

fiveiterations. Becausethe 2-D system correspondsto thelimit a/L ® ¥ asdiscussed
in Sec. I11, thetrangtion curvefor a/L = ¥ isidenticd to the results predicted by (30).

Fig. 6 shows aplot of the upper bounds for trangition to occur inthe 2-D and 3-D

systems. The upper bounds are precisdy the intersections of the curvesin Fig. 5 with the

Fg:Oaxis

14



Before concluding this section, we congder the following two limits of (34).

Expanding (34) inthelimit a >>1 (i.e. anearly unbunched beam) and

Iobnag» Ilbnag »e™ b2pna gllz , We obtain:

2 3,52
® @l- 2pa 20728 = 1. 8pL_2ae—4pa/L (35)

2
c

which shows that the system asymptoticaly gpproaches the 2-D system’ s Brillouin flow
limit for large a/ L. The other important limit of (34), a <<1 (i.e. astrongly bunched

beam), may be solved numericdly, and yids.

2a
L

® @t = 36
: @ (36)

which is ggnificantly lower than the Brillouin density limit.

15



V. Discussions

We have ignored the redigtic effect of afinite bunch Szein our present modd.
Incorporating such an effect would reduce the stringent beam confinement criterion
placed on the sdf-fiedld parameter. Quadlitatively, both the beam space charge and the
induced surface charges would be less dense, and therefore the beam would experience a
reduced dectric field force from the conducting wal and the other bunches.

A separate effect for afinite charge bunch would be the evolution of the bunch shape.
In order to evauate the importance of such an effect relative to the beam loss mechanism
just described, it is necessary to compare their time scales. We will now give an order of
magnitude estimate for the escape time (i.e. the time needed for a particle to escape to the

wal).
For amplicity, assume that the particle has no canonical angular momentum ( If\>q =0),

and the particleisinitidly at the center of the conductor (f =0). We will assume that the

initial radial momentum is nonzero, but relativdy small (0< P2 <a? <<x). Using (17)

and ignoring the 3-D correction terms F If§ g we obtain,

R

_ dc
_g[ézo/az - ¢ - x/a’In(1- Czh]l/2 0

-?U>| =3

where ¢ =Ff/a . Therefore, the escapetimeist =t /w ~Cx/a2h']’/2/wL ~w,
We can obtain an order of magnitude for the evolution time, by considering the

dynamics of only one uniform sphericd bunch of radius, R, charge, g, and mass, m, with

no conductor present. Using Coulomb’s Law and the Lorentz Force Law, we find that

d’R_ @2

d®> mR*

(38)

16



Equation (38) implies thet the evolution time scale is of the order (mR®/qg? h]/2 . Assuming

the density is of the order C4pR3/3hl, then the evolution time is of the order w " Hence,

the effect of the bunch shape evolution is, in generd, not negligible compared to the
beam loss mechanism. Therefore, a detailed investigation of the effect of finite bunch

szeisrequired to quantify the confinement of moderately bunched beams.

17



VI. Summary

In the present paper, we have derived confinement criteriafor a highly bunched beam
and an unbunched beam propageating down a perfectly conducting cylinder with an
gpplied magnetic fiedld. We have modded these two systems by approximating the
unbunched beam as arod of charge and the bunched beam as collinear periodic charges.
For these two models, we have derived the equations of transverse motion from the
Hamiltonian.

The criteria have been obtained by examining the properties of the beam’ sradia
phase space. There are two possible phase spaces, one which alows trapped particle
orbits and one which does not. The difference between the two is shown to be caused by

the behavior of an effective radia potentid (i.e. whether it has akink or not). When
varying the three parameters fa ,x, P ] in the system, the behavior of the effective
potentia undergoes acritica trangtion.

Thevauesof fa,x, P ] where the critical trangtion occurs yield an upper bound on

the sif-field parameter 2w’ /w2 © x/a * for which trapped particle orbits exists. For an
unbunched beam, the upper bound on the self- field parameter has been shown to be
2w? /w? £1, which is precisdly the Brillouin density limit. For abunched beam, the

maximum vaue of the sdf-fidd parameter isgiven in (34). The limit on the sef-fidd
parameter will dways be less for the bunched beam than for the unbunched beam due to
the higher loca dengty of interna charges and induced surface charges, which contribute

ahigher dectric fidd force.

18



The results reported in this paper are gpplicable to ardativistic charged- particle beam
by a proper gpplication of the Lorentz transformation from the laboratory frame to the
frame of reference moving with the beam. Findly, it isanticipated thet the resultsin this
paper will provide auseful ingght into the confinement of high-intensity bunched beams

in linear accdlerators as well asin high-power microwave sources such as klystrons.

19



Appendix. Calculation of the Electrogtatic Self - Field

When cdculaing the sdif-fidd force, we may assume thatq( = 2¢ = 0, without loss of

generdity, and express f¢:$fdéw and T, = La cosq é + Lazzlnq e, +2L—;éz. Since

EJrd=E0r§=0 by the symmetries of the system in the longitudinal and azimuthal
directions, we need only consider the force dong the direction of é,=é,,. Making use

of the expressions,

2
anddS=adzdq = ﬁﬂ a dzdg , we may express (12) as
p

el :_42 dhz cosq - blsdg

(A1)
o o(l+b?+h?- 2bcosq

s

whereh =Z/a and b =f¢/a , and we have dso used the longitudina and azimuthal

symmetries to change the limits of integration.
Subgtituting (10) into (A1), we find that the salf-electric fild produced by the 2-D
induced surface charge at the line charge is
L, AL o7 j _da lcosq - bl] dh
® La gleb®-2bcosml s[1+b?+h2- 2bcosy)”  (ap)

_4pl ¢
L a?-r¢

-

which isidentica to (13). This result can dso be obtained easly usng the method of

images. 1

20



Of course, thefirgt termin (14) corresponds to the 2-D component, which we have
just derived. Subdtituting (11) into (A1), we can express the self-dectric field produced

by the 3-D induced surface charge at the point charge as,

- _4qu re |, 8q 4 10nrdQ, 160 ¢ ¢
E |f - | +
2 - &N aLza I Onag al? na:‘lel |, Ina

where

cosl]nahgcosnlqgncosq - b{dh dg
o5 (1+bZ+h?- 2bcosgl”
1 2 codnah cosblquhdq

b5 (1+b2+h2- 2bcosqh

Q=

O‘|_—.‘ cr|——"

N nab na +2a| bnabngbnagcog]pqg cosblquq

p=1

!
Z Kofna y/1+b2- 2b coqucosblqg
Z
pK, fa

g bnabg

=pnak (na gl ,tﬂnr“@ (A4

In the third step in (A4), we made use of the rdlation*?,

s

while in step 4 we used the formula *®,

K f/a? +b? - 2abcosqj = IobagKobbg+ 25_ Ipbangbbgcosbpqg, O£ a<b.

Substituting (A4) into (A3) yidds (14).

21



Acknowledgement
Thiswork was supported by the Air Force Office of Scientific Research, Grant
No. F49620-97-1-0480 and Grant No. F49620-00-1-0007, and by the Department of
Energy, Office of High Energy and Nuclear Physics, Grant No. DE-FG02- 95ER-

40919



References
'R. C. Davidson, Physics of Nonneutral Plasmas (Addison-Wesey, Reading,
Massachusetts, 1990).
’M. Reisar, Theory and Design of Charged Particle Beams (John Wiley & Sons, New
York, 1994).
3L. Brillouin, Phys. Rev. 67, 260 (1945).
“See, for example, Chap. 1 and p. 545 of Ref. 1.
°F. J. Sacherer, IEEE Trans. Nucl. Sci. NS-18, 1105 (1971).
¢J. J. Barnard and S. M. Lund, in Proceedings of the Particle Accelerator Conference,
edited by M. Comyn (Ingtitute of Electrical and Electronics Engineers, Piscataway, NJ,
1997), p. 1929.
'R. L. Gluckstern, A. V. Fedotov, S. Kurennoy, and R. Ryne, Phys. Rev. E 58, 4977
(1998).
8C. Chen and R. Pakter, Phys. Plasmas 5, 2203 (2000).
°C. Chen and R. Pakter, “Electron Beam Halo Formation in High-Power Klystron
Amplifiers” IEEE Trans. Plasma &ai., in press (2000).
10C. Chen and R. Pakter, “Hdo Formation in Intense Electron Beams in High-Power
Klystron Amplifiers,” in Intense Microwave Pulses V1, edited by H. E. Brandt, SPIE
Proc. 3702, 21 (1999).
1], D. Jackson, Classical Electrodynamics, 2nd ed. (John Wiley & Sons, New Y ork,
1975), Ch. 3.
12M. Hess, R. Pakter, and C. Chen, “Green’s function description of space chargein

intense charged- particle beams,” Proceedings of the Particle Accelerator Conference,

23



edited by A. Luccio and W. Mackay (Indtitute of Electrical and Electronics Engineers,
Piscataway, NJ, 1999), p. 2752.

13G. Barton, Elements of Green’s Functions and Propagation (Oxford University Press
Inc., New York, 1995), p. 412-416.

4], S. Gradshteyn and |. M. Ryzhik, Table of Integrals, Series, and Products 5th ed.
(Academic Press, London, 1994), p. 464.

15A. Gray and G. B. Mathews, A Treatise on Bessel Functions and Their Applications to

Physics, 2nd ed. (MacMillan and Co., London, 1952), p. 74.

24



Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

Fig. 5.

Fig. 6.

Figure Captions
Schematics of (a) line charge and (b) periodic array of chargesin aperfectly
conducting cylinder.
Plots of the effective potentid ang vs. f inthe 2-D system for the choices of
system parameters corresponding to: (8)x/a ? =05 and FA(;/a 2=001, and (b)
x/a?=30and P, /a?=001.
Plots of the radid phase space in the 2-D system for the two cases with the same

choices of the system parameters as those shown in Figs. 2(a) and 2(b).

Plots of the radid phase space in the 3-D system for the choices of system
parameters corresponding to: (a) x/a 2 = 05, P, /a? =001 and a =10, and (b)
x/a?=01,P,/a?=001anda =10.

Plots of the maximum value of the saif-field parameter 2w 2 /w? for corfinement
asafunction of normalized canonical angular momentum 2 B, /mw  a? for

several vaues of the aspect ratio a/ L inthe 3-D system. Note that the 2-D
system correspondsto the limita/L = ¥ , and the curvewith a/L =¥ isobtained
from (30).

Plots of the maximum value of the saf-field parameter 2w 2 /w? for corfinement

asafunction of the aspect ratio a/L for B, =0 in boththe 2-D and 3-D systems.
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Fig. 1(b)
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