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ABSTRACT 

 
     The non-relativistic motion is analyzed for a highly bunched beam propagating 

through a perfectly conducting cylindrical pipe confined radially by a constant magnetic 

field parallel to the conductor axis.  In the present analysis, the beam is treated as either a 

thin rod distribution representing a continuous (unbunched) beam or periodic collinear 

point charges representing a highly bunched beam.  Use is made of a Green's function to 

compute the electrostatic force on the beam due to the induced surface charge in the 

conductor wall.  By analyzing the Hamiltonian dynamics, a criterion is derived for the 

confinement of unbunched and bunched beams.  It is shown that for the confinement of 

beams with the same charge per unit length, the maximum value of the effective self-field 

parameter is 2 22 2ω ωp c a L≅  for a highly bunched beam with a L<< .  This value is 

significantly lower than the Brillouin density limit for an unbunched beam 2 12 2ω ωp c = .  

Here a is the radius of the conducting cylinder, and L is the periodic spacing of the 

bunches. 

PACS: 29.27, 41.85 
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 I. Introduction 

Confinement and transport of high-intensity charged-particle beams are important 

subjects in both plasma physics and beam physics 1,2.  It is well known that for a 

continuous, non-neutral, charged-particle beam propagating in a uniform magnetic field, 

the maximum beam density is determined by the so-called Brillouin density limit 3,4.  For 

nonrelativistic beams, the Brillouin density limit corresponds to the condition 

2 12 2ω ωp c = , where ω πp q n m= 4 2 1 2c h is the nonrelativistic plasma frequency, and 

ω c qB mc= is the nonrelativistic cyclotron frequency.  Although there is a large body of 

literature on the equilibrium and stability properties of high-intensity continuous non-

neutral charged-particle beams, high-intensity bunched beams are rarely discussed in the 

literature 5-7.   

There is a need to gain a fundamental understanding of high-intensity bunched beams 

because they are widely employed in high-power microwave (HPM) sources, such as 

klystrons and traveling wave tubes, as well as in high-intensity particle accelerators such 

as high-intensity linacs.  In both HPM sources and high-intensity particle accelerators, an 

important problem associated with lack of full beam confinement caused by the bunching 

of the electron and ion beam in the direction of beam propagation is beam loss, through 

such mechanisms as beam halo formation 8-10.  

In this paper, we analyze the nonrelativistic motion of a highly bunched beam 

propagating through a perfectly conducting cylindrical pipe confined radially by a 

constant magnetic field parallel to the conductor axis.  In the present analysis, the beam is 

treated as either a thin rod distribution representing a continuous (unbunched) beam or 

periodic collinear point charges representing a highly bunched beam.  Use is made of the 
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Green's function to compute the electrostatic force on the beam due to the induced 

surface charge in the conductor wall.  From Hamilton's equations, the radial phase space 

is studied for both unbunched and bunched beams.  In general, the radial phase space 

contains both closed orbits (i.e., trapped particle orbits) and untrapped orbits (i.e., orbits 

which intersect the conductor wall) at sufficiently low beam densities, whereas only 

untrapped orbits exist at sufficiently high beam densities.  By determining the conditions 

for the disappearance of trapped particle orbits, a criterion for the confinement of a highly 

bunched beam is derived.  It is shown that for the confinement of beams with the same 

charge per unit length, the maximum value of the effective self-field parameter is 

2 22 2ω ωp c a L≅  for a highly bunched beam with a L<< , where a is the radius of the 

conducting cylinder and L is the periodic spacing of the bunches.  This result is 

significantly lower than the Brillouin density limit 2 12 2ω ωp c = for an unbunched beam. 

The paper is organized as follows.  In Sec. II, a Green's function model is 

presented for unbunched and bunched beams, and the electrostatic field produced by the 

induced surface charge is computed.  In Sec. III, the Hamiltonian dynamics of the beam 

is studied.  In Sec. IV, a criterion is derived for the confinement of unbunched and 

bunched beams. Discussions and conclusions are in Sec. V and VI, respectively.   
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II. Green’s Function Description of Space Charge 

 The systems we are analyzing consist of periodic space charge in an infinite perfectly 

conducting cylinder, which is grounded, as shown in Fig. 1.  In particular, we investigate 

the dynamics of two types of periodic space charge.  One type is a uniform rod of charge, 

shown in Fig. 1(a) representing an unbunched beam.  Another type is a collinear 

distribution of charges equally spaced by a distance, L, shown in Fig. 1(b) representing a 

highly bunched beam.  The radius of the cylinder is a, and the distance from the axis that 

the space charge is displaced is r.  We assume that there exists an applied uniform 

magnetic field 
r
B B ez= $ , and $ez denotes the unit vector parallel to the axis of the 

conductor.  Physically the 2-D case is recovered from the 3-D case by taking the limit 

a L → ∞  for a fixed charge density.  

 The presence of the periodic space charge induces a charge density, σ, on the surface 

of the conductor.  The induced surface charge provides an electrostatic force on the space 

charge.  We assume that the transverse velocity of the space charge is sufficiently small 

compared to the speed of light, hence only the electrostatic force from the conducting 

wall and the applied magnetic force are non-negligible in the system.   

In order to compute the induced surface charge and the electrostatic force, we first 

formulate a Green’s function, which is the electrostatic potential inside the entire cylinder 

for a given distribution of unit charge(s).  In cgs units, the Green’s function, G, satisfies 

the Laplace’s equation,  

 ∇ = − − ′2 4G x xπρ
r rb g  (1) 

where the primed coordinates denote the position of the charge(s) and the unprimed 

coordinates denote the point of observation.  For the 2-D rod of charge, 
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 ρ δ δ θ θ
r r
x x

r
r r− ′ = − ′ − ′b g b g b g1

 (2) 

while for the 3-D collinear distribution, 

 ρ δ δ θ θ δ
r r
x x

r
r r z z nL

n

− ′ = − ′ − ′ − ′ −
=−∞

∞

∑b g b g b g b g1
. (3) 

where δ xb g  is the Dirac δ-function. 

 The Green’s function for both distributions satisfies three other criteria; it must be 

both rotationally invariant by 2π  and translationally invariant by nL in the unprimed 

coordinates, and the function must be zero at the conductor (Dirichlet condition), i.e. 

 

G G

G G

G
z nL z

r a

θ π θ+

+

=

=

=

=

2

0

  (4) 

 A solution to (1) can be formed by expanding in terms of eigenfunctions of Laplace’s 

equation in cylindrical coordinates.  For the 3-D case, we find the solution 11, 12 

 G
L

e e
I nr
I n

I n K nr I nr K nD
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l l l l3
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= −− ′ − ′ <

=−∞

∞
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∞
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where 

 $ , $ , $ , $ ,r
r

L
r

r
L

z
z

L
z

z
L

a
L

= ′ =
′

= ′ =
′

=
2 2 2 2 2π π π π
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π

, (6) 

and the notation $r> <b g  represents the greater(lesser) of $r  and $′r .  Simplification of (5) is 

possible by summing over the n = 0 terms, and combining the n < 0 terms with their 

positive counterparts yielding,   
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  (7)    

where G2D represents the solution of (1) for the 2-D rod distribution. G2D  is given by 

 G
r r r r

r r r rD2

2 2

2 2

2
2

=
+ − − ′

+ − − ′

L
NMM

O
QPP

> < > <

> < > <

ln
$ $ / $ $ cos

$ $ $ $ cos
α α θ θ

θ θ
b g b g

b g  (8) 

which is well known 13. 

  Since the Green’s function represents the electrostatic potential of a unit charge, we 

can readily calculate the electric field at the surface of the wall and the induced surface 

charge density, σ, using the relation 

  σ
π π α

=
⋅

=
− ⋅∇

=
∂
∂ =

$ $
$ $

n E Cn G C
L

G
r

surface surface

r

r r

4 4 2
, (9) 

where $n  denotes the unit vector perpendicular to the surface $ $n er= −b g  and 
r
E is the 

electric field.  C is a factor which depends on whether we are solving the 2-D or 3-D 

problem.  For the 3-D problem, C is equal to q, the value of each individual charge.  For 

the 2-D problem, C is equal to λ, the charge per unit length of the rod.   

 For the 2-D case, the induced surface charge density is 

 σ
λ
α

α
α α θ θ

λ
α

σ2

2 2

2 2 22D DL
r

r r L
= −

− ′
+ ′ − ′ −

L
NM

O
QP = −

$
$ $ cos '

$b g , (10) 

while for the 3-D case we have, 
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θ θ

α

3
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. (11) 
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In deriving (11), use has been made of the Wronskian, I x K x I x K x xl l l lb g b g b g b g′ − ′ = −1 .  

 We are now in a position to compute the electric field, 
r
E self , which is exerted on the 

charge distribution inside the conductor by the induced surface charge.  Because of the 

system’s symmetry in the $eθ  and $ez  directions, the electric field at the charge distribution 

can only be in the $er  direction.  Since the sign of the surface charge is opposite to that of 

the internal charges, the force must be attractive. 
r
E self can be obtained by integrating the 

differential electric field vector, evaluated at the charge distribution location, over the 

entire conductor,   

  
r r r r r

r rE r dS
r r r

r r
self s s

ssurface

′ =
′ −

′ −zb g b g b gσ
3 .  (12) 

rrs  is the vector measured from the central axis of  the conductor to the point of the 

differential charge.   As will be demonstrated in the Appendix, 
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for the 2-D case, and 
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D
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 (14) 

for the 3-D system. 
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III. Hamiltonian Dynamics 

 We can investigate the radial dynamics of one rod of charge (2-D) or one string of 

charges (3-D) interacting with its self-field (14) and a constant applied magnetic field, 

r
B B ez= $ .  In this system, there are no forces in the longitudinal direction.  Therefore we 

may describe all of the dynamics using a Hamiltonian in the radial and azimuthal 

directions and set vz = 0 without loss of generality.  In particular, the Hamiltonian for 

tranverse motion is given by, 

  H
m

P
qA
c r

P
rqA

c
qr

r self= −FHG IKJ + −FHG IKJ
L
NMM

O
QPP +

1
2

12

2

2

θ
θ φ  (15) 

where 
r
P  is the canonical momentum, 

r
A

rB
e=

2
$θ  is the vector potential, and 

  φ self self
r

E dr= −z
0

 (16) 

 For the 2-D system, we can set m L= ρ  where ρ is the mass density of the rod, and 

q L= λ .  Dividing by L on both sides of (15) yields a Hamiltonian per unit length, which 

correctly describes the 2-D dynamics.  Applying Hamilton’s equations to (15), gives the 

following set of normalized equations: 

  

dr
d

P
dP
d

P
r

r E

d
d

P
r

dP
d

r
r self$ $ ,
$ $

$ $ $

$
$ ,

$
τ τ

ξ

θ
τ τ

θ

θ θ

= = − +

= − =

2

3

2
1 0

 (17) 

where normalized variables and parameters are defined by 
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τ ω

π
ω

π
ω

π
ξ

π
ω

θ
θ= = = FHG IKJ

= = =

L r
r

L L

self
self

L

t P
P

mL
P

L
P

m

E
L E

q
mc

L B
qB
mc

, $ , $

$ , ,

2 2

4
32

2

2

2 2 2

3 2

 (18) 

and ω L represents the Larmor frequency.  From (17), it is obvious that the canonical 

angular momentum is conserved.  Combining the first two equations in (17), and 

denoting initial conditions with a subscript 0, we can find an expression relating the 

canonical radial momentum with the radial position,  

  $ $ $ $P P F r F rr r= ± + −0
2

0b g b g  (19) 

where F represents an effective potential energy, and is given by, 

  F r
P
r

r
r

( $)
$
$ $ ln

$
= + + −

F
HG

I
KJθ ξ

α

2

2
2

2

21  (20) 

for the 2-D case while 

F r
P
r

r
r K n

I n
I nr

K n
I n

I nr
n

l

l
l

ln

( $)
$
$ $ ln

$ $ $= + + −
F
HG

I
KJ − −

=

∞

=

∞

=

∞

∑ ∑∑θ ξ
α

ξ
α
α

ξ
α
α

2

2
2

2

2
0

0
0
2

1

2

11

1 2 4
b g
b g b g b g

b g b g  (21) 

for the 3-D case.  Making use of the asymptotic properties of the modified Bessel 

functions, it is readily shown that in the limit a L → ∞ , F r$b g  in (21) for the 3-D case 

approaches to F r$b g  in (20) for the 2-D case.  Therefore, the analysis of confinement in 

the 2-D system will be fully recovered in the 3-D analysis in the a L = ∞  limit. 

 Figures 2(a) and 2(b) showF r$b g  plotted for two different sets of values of ξ θ, $Pe j  for 

the 2-D system.  There are two possible behaviors for this function to have.  In Fig. 2(a), 

there is a kink (i.e. the function has one local minimum and one local maximum), while 

for Fig. 2(b) the function is monotonically decreasing.  A function, F r$b g  , with a kink 
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leads to a radial phase space $, $r Pre j ,  as is illustrated in Fig. 3(a), which contains both 

trapped and untrapped particle orbits. An untrapped particle orbit will result in the 

particle eventually being lost to the conductor wall, whereas a trapped orbit corresponds 

to a particle confined inside of the perfectly conducting cylinder.  A monotonically 

decreasing function as in Fig. 2(b), will produce a phase space such as Fig. 3(b), which 

only contains untrapped particle orbits.   

 To illustrate the 3-D effects (i.e. effects of beam bunching), we compare the phase 

space for the 3-D case in Figs. 4(a) and 4(b) with the 2-D case shown in Fig. 3.  In 

particular, 4(a), which has only untrapped orbits, has the same ξ and $Pθ  values as 3(a), 

illustrating the added effect of the electric field in the 3-D regime.  However, trapped 

particle orbits do exist at lower values of ξ  such as for the value of ξ  shown in Fig. 4(a).  
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IV. Conditions for Confinement 

 The complete criterion for trapped particle orbits is threefold, a) F r$b g  must have a 

kink, b) the initial particle radius must be chosen between the local maximum ofF r$b g  
and the other point on F r$b g  corresponding to the same value, and c) the initial radial 

momentum must be sufficiently small, such that 

  $ $ $
min

P F r F rr 0
2

0≤ −b g b g . (22) 

 The most important of the three criteria for trapped particle orbits is the first.  We 

therefore determine the region in parameter space α ξ θ, , $Pe j  space for both the 2-D and  

3-D systems, such that F r$b g  has a kink.  In order to find this criterion for F r$b g , i.e. that 

trapped particle orbits may exist, we must look for the conditions such that 

′ = ′′ =F r F r$ $b g b g 0 , where ′ =F r dF r dr$ $ $b g b g  and ′′ =F r d F r dr$ $ $b g b g2 2 .  This represents 

that transition point between F r$b g  being monotonic and non-monotonic.  

 

A. Confinement for the 2-D System 

 It is evident in (20) that the only increasing term in F r$b g  is the $r 2  term and all other 

terms are decreasing.  When ξ = 0 , applying the transition condition ′ = ′′ =F r F r$ $b g b g 0  

yields $Pθ α= 2  at $r = α  for both systems.  However, when $Pθ = 0 , it follows from (20) 

that F r r r$ $ ln $b g c h= + −2 2 21ξ α .  Expanding F r$b g  near $r = 0  yields F r r$ $b g c h≅ −2 21 ξ α .  

So F r$b g  will not be monotonic at $r = 0  for sufficiently small $Pθ  when the coefficient of 
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the quadratic term is positive (i.e. when ξ α 2 1< ).  Therefore, the necessary conditions 

for F r$b g  to have a kink are $Pθ α< 2  and ξ α 2 1< .   

 Manipulating the equation ′ =F r$b g 0  and letting y r= α $ , we find that 

  y y y6 4 2 21 1 0+ − + − =ν µb g c h , (23) 

where µ αθ= $P 2  and ν ξ α= 2 .  Because 0 1< <y  (0 < <$r α ), we can further simplify 

(23) by letting z y= 2 , and obtain 

  G z z z zb g b g b g≡ + − + − =3 2 21 1 0ν µ , (24) 

where 0 1< <z .  Note that G 0 02b g = >µ  and G 1 0b g = >ξ .   

 It is straightforward to show that G zb g  has precisely one zero when the transition 

point occurs.  This statement is equivalent to stating that the minimum of G zb g  must be 

equal to zero, and that the minimum must occur between 0 and 1 for trapping to occur.  

These conditions yield 

  3 2 1 02 2z zmin min ,+ − − =ν µb g  (25)  

  0
1 1 3

3
1

2 2

< =
− + − +

<zmin

ν ν µb g b g
, (26) 

  z z zmin min min
3 2 21 1 0+ − + − =ν µb g b g  (27) 

where zmin is the minimum of G. 

 Substituting (26) into (27) and solving for µ with the aid of (25) yields two possible 

solutions, 

  µ µ µ µ2 2 2 2= =+ −,  (28) 

where  
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 8 27 18 1 1 27 18 1 1 64 12 2 2 2 3µ ν ν ν ν ν± = − − − − ± − − − − − −b g b g b g b ge j b g . (29) 

 However, the inequality (26) yields, µ ν2 2 1< + , and by graphical inspection only 

µ µ2 2< −  is possible.  We find that for the 2-D system, the following inequality must be 

satisfied for trapped particle orbits to occur, 

  8 27 18 1 1 27 18 1 1 64 12 2 2 2 3µ ν ν ν ν ν≤ − − − − − − − − − − −b g b g b g b ge j b g  (30) 

Note that since µ andν are both independent of L, (30) is also independent of L.  Equation 

(30) is plotted later in Fig. 5 in terms of normalized Pθ  and the effective plasma 

frequency, as we compare the 2-D case with the 3-D case.  

 Since the effective density of particles for both systems is given by n a L=
−

π 2 1c h , we 

can relate ξ α 2  to the effective plasma frequency ω πp nq m= 4 2 1 2c h  (where q L= λ ), 

and the cyclotron frequency ω c qB mc=  by ξ α ω ω2 2 22= p c , which is the familiar self-

field parameter.  As shown in Fig. 5, the maximum of the self-field parameter occurs at 

$Pθ = 0 , and the maximum value is 2 12 2ω ωp c = .  Therefore, the criterion for the 

confinement is:  

  2 12 2ω ωp c ≤ . (31) 

Note that ω ωp c
2 2 2=  corresponds to the Brillouin density limit 3, 4.  

    

B. Confinement for the 3-D System 

 For the 3-D system when $Pθ = 0 , we can expand (21) near $r = 0  and find that the 

 lowest order non-constant term, the quadratic term, will be positive when 
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  1 02 2 0

0

1

11

− − +
L
NM

O
QP ≥

=

∞

∑ξ α ξ
α
α

α
α

n
K n
I n

K n
I nn

b g
b g

b g
b g . (32) 

By utilizing a formula related to the Wronskian, I z K z I z K z zm m m mb g b g b g b g+ ++ =1 1 1 , we 

can simplify (32) to 

  ξ
α

α
α α

≤
+

=

∞

∑

2

0 11

1
n

I n I nn b g b g
. (33) 

 

  The upper bound on the self-field parameter for the 3-D system also occurs at 

$Pθ = 0 ; hence, the criterion for confinement is  

  
2 1

1

2

2

0 11

ω

ω α
α α

p

c

n

n
I n I n

≤
+

=

∞

∑ b g b g
. (34) 

 Fig. 5 illustrates a few of the critical transition curves in a normalized Pθ  and 

2 2 2ω ωp c  space.  In obtaining the results in Fig. 5, we use Newton’s method to 

simultaneously solve the equations, ′ = ′′ =F r F r$ $b g b g 0  for fixed values of $r  and α.  Seed 

values are given to ξ  and $Pθ , and convergence of these values typically occurs within 

five iterations.  Because the 2-D system corresponds to the limit a L → ∞  as discussed 

in Sec. III, the transition curve for a L = ∞  is identical to the results predicted by (30). 

  Fig. 6 shows a plot of the upper bounds for transition to occur in the 2-D and 3-D 

systems.  The upper bounds are precisely the intersections of the curves in Fig. 5 with the 

Pθ = 0  axis. 
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 Before concluding this section, we consider the following two limits of (34). 

Expanding (34) in the limit α >> 1 (i.e. a nearly unbunched beam) and 

I n I n e nn
0 1

1 22α α π ααb g b g b g≈ ≈ , we obtain: 

 
2

1 2 1
82

2
2 2

3 2

2
4ω

ω
πα

πα πp

c

a Le
a

L
e≅ − = −− −   (35) 

which shows that the system asymptotically approaches the 2-D system’s Brillouin flow 

limit for large a L .  The other important limit of (34), α << 1 (i.e. a strongly bunched 

beam), may be solved numerically, and yields: 

   
2 22

2

ω
ω

α
π

p

c

a
L

≅ =  (36) 

which is significantly lower than the Brillouin density limit.   
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V. Discussions   

 We have ignored the realistic effect of a finite bunch size in our present model.  

Incorporating such an effect would reduce the stringent beam confinement criterion 

placed on the self-field parameter.  Qualitatively, both the beam space charge and the 

induced surface charges would be less dense, and therefore the beam would experience a 

reduced electric field force from the conducting wall and the other bunches.   

 A separate effect for a finite charge bunch would be the evolution of the bunch shape.  

In order to evaluate the importance of such an effect relative to the beam loss mechanism 

just described, it is necessary to compare their time scales.  We will now give an order of 

magnitude estimate for the escape time (i.e. the time needed for a particle to escape to the 

wall).   

 For simplicity, assume that the particle has no canonical angular momentum ( $Pθ = 0 ), 

and the particle is initially at the center of the conductor ( $r = 0 ).  We will assume that the 

initial radial momentum is nonzero, but relatively small (0 0
2 2< < <<$Pr α ξ ).  Using (17) 

and ignoring the 3-D correction terms F r$b g  we obtain, 

  τ
χ

α χ ξ α χ

α

= =
− − −

z zdr
P

d

Pr r

$
$ $ ln0 0

2 2 2 2 2
1 2

0

1

1c h  (37) 

where χ α= $r .  Therefore, the escape time is t L L p=
− −τ ω ξ α ω ω~ ~2 1 2 1c h . 

 We can obtain an order of magnitude for the evolution time, by considering the 

dynamics of only one uniform spherical bunch of radius, R, charge, q, and  mass, m, with 

no conductor present.  Using Coulomb’s Law and the Lorentz Force Law, we find that  

  
d R
dt

q
mR

2

2

2

2= . (38) 
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Equation (38) implies that the evolution time scale is of the order mR q3 2 1 2c h .  Assuming 

the density is of the order 4 33 1
πRc h−

, then the evolution time is of the order ω p
−1 .  Hence, 

the effect of the bunch shape evolution is, in general, not negligible compared to the 

beam loss mechanism.  Therefore, a detailed investigation of the effect of finite bunch 

size is required to quantify the confinement of moderately bunched beams.
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VI. Summary 

 In the present paper, we have derived confinement criteria for a highly bunched beam 

and an unbunched beam propagating down a perfectly conducting cylinder with an 

applied magnetic field.  We have modeled these two systems by approximating the 

unbunched beam as a rod of charge and the bunched beam as collinear periodic charges.  

For these two models, we have derived the equations of transverse motion from the 

Hamiltonian.   

 The criteria have been obtained by examining the properties of the beam’s radial 

phase space.  There are two possible phase spaces, one which allows trapped particle 

orbits and one which does not.  The difference between the two is shown to be caused by 

the behavior of an effective radial potential (i.e. whether it has a kink or not).  When 

varying the three parameters α ξ θ, , $Pe j  in the system, the behavior of the effective 

potential undergoes a critical transition.       

 The values of α ξ θ, , $Pe j  where the critical transition occurs yield an upper bound on 

the self-field parameter 2 2 2 2ω ω ξ αp c ≡ for which trapped particle orbits exists.  For an  

unbunched beam, the upper bound on the self- field parameter has been shown to be 

2 12 2ω ωp c ≤ , which is precisely the Brillouin density limit.  For a bunched beam, the 

maximum value of the self-field parameter is given in (34).  The limit on the self-field 

parameter will always be less for the bunched beam than for the unbunched beam due to 

the higher local density of internal charges and induced surface charges, which contribute 

a higher electric field force.  
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 The results reported in this paper are applicable to a relativistic charged-particle beam 

by a proper application of the Lorentz transformation from the laboratory frame to the 

frame of reference moving with the beam.  Finally, it is anticipated that the results in this 

paper will provide a useful insight into the confinement of high-intensity bunched beams 

in linear accelerators as well as in high-power microwave sources such as klystrons.
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                 Appendix.  Calculation of the Electrostatic Self - Field 

 When calculating the self-field force, we may assume that ′ = ′ =θ $z 0 , without loss of 

generality, and express 
r

′ = ′ ′r
L

r ex2π
$ $  and 

r
r

L
e

L
e

Lz
es x y z= + +

α θ
π

α θ
π π

cos $ sin $ $ $
2 2 2

.  Since 

E r E rz
r r
′ = ′ =b g b gθ 0  by the symmetries of the system in the longitudinal and azimuthal 

directions, we need only consider the force along the direction of $ $e er x′ ′= .  Making use 

of the expressions, 

  
r r
r r
′ − ⋅

′ −
= −FHG

I
KJ

−
′

+
′

+ −
′F

HG
I
KJ

r r x

r r L

r

r z r
s

s

b g $ cos
$

$ $ $
cos

3

2

2

2

2

2

3 2

2

1 2

π
α

θ
α

α α α
θ

. 

and dS adz d
L

dz d= = FHG IKJθ
π

α θ
2

2

$ , we may express (12) as 

   E d
dself = −

−

+ + −
zz∞4

1 22 2 3 2
00

η
θ β σ θ

β η β θ

π cos

cos

b g
c h  (A1) 

where η α= $z  and β α= ′$r , and we have also used the longitudinal and azimuthal 

symmetries to change the limits of integration.   

 Substituting (10) into (A1), we find that the self-electric field produced by the 2-D 

induced surface charge at the line charge is  

 
E

L
d d

L
r

r

D
self
2

2

2 2 2 3 2
00

2 2

4 1

1 2 1 2

4

=
− −

+ − + + −

=
′

− ′

∞zzβ λ

α
θ θ β
β β θ

η

β η β θ

πλ
α

πc h b g
c h c h

cos
cos cos

$
$

 (A2) 

which is identical to (13).  This result can also be obtained easily using the method of 

images. 13 
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 Of course, the first term in (14) corresponds to the 2-D component, which we have 

just derived.  Substituting (11) into (A1), we can express the self-electric field produced 

by the 3-D induced surface charge at the point charge as,  

  E
q

L
r

r
q
L

I nr
I n

q
L

I nr
I nD

self n

n

l nl

lln
3 2 2 2 2

0 0

01
2

11

4 8 16
=

′
− ′

FHG IKJ +
′

+
′

=

∞

=

∞

=

∞

∑ ∑∑π
α α α α α

$
$

$ $b g
b g

b g
b g

Θ Θ
 (A3) 

where 

Θnl

p p
p

l

n l d d

n l d d

K n l d

I n K n I n K n p l d

K n

=
−

+ + −

=
∂

∂ + + −

=
∂

∂
+ −

=
∂

∂
+

L
NM

O
QP

=
∂

∞

∞

=

∞

zz
zz
z

∑z

cos cos cos

cos

cos cos

cos

cos cos

cos cos

αη θ θ β η θ

β η β θ

β
αη θ η θ

β η β θ

β
α β β θ θ θ

β
αβ α αβ α θ θ θ

π α

π

π

π

π

b g b gb g
c h

b g b g
c h
e j b g

b g b g b g b g b g b g

b g

1 2

1 2

1 2

2

2 2 3 2
00

2 2 1 2
00

0
2

0

0 0
10

∂β
αβI nlb g

 

      = ′ ′π α αn K n I nrl lb g b g$   (A4) 

In the third step in (A4), we made use of the relation 14, 

  
cos ax dx

b x
K ab

b g b g
2 2

0
0

+
=

∞z , 

while in step 4 we used the formula 15, 

 K a b ab I a K b I a K b p a bp p
p

0
2 2

0 0
1

2 2 0+ − = + ≤ <
=

∞

∑cos cos ,θ θe j b g b g b g b g b g . 

Substituting (A4) into (A3) yields (14). 



 22 

Acknowledgement 

 This work was supported by the Air Force Office of Scientific Research, Grant 

No. F49620-97-1-0480 and Grant No. F49620-00-1-0007, and by the Department of 

Energy, Office of High Energy and Nuclear Physics, Grant No. DE-FG02-95ER-

40919



 23 

                                                        References 

1R. C. Davidson, Physics of Nonneutral Plasmas (Addison-Wesley, Reading, 

Massachusetts, 1990). 

2M. Reiser, Theory and Design of Charged Particle Beams (John Wiley & Sons, New 

York, 1994).  

3L. Brillouin, Phys. Rev. 67, 260 (1945). 

4See, for example, Chap. 1 and p. 545 of Ref. 1. 

5F. J. Sacherer, IEEE Trans. Nucl. Sci. NS-18, 1105 (1971). 

6J. J. Barnard and S. M. Lund, in Proceedings of the Particle Accelerator Conference, 

edited by M. Comyn (Institute of Electrical and Electronics Engineers, Piscataway, NJ, 

1997), p. 1929. 

7R. L. Gluckstern, A. V. Fedotov, S. Kurennoy, and R. Ryne, Phys. Rev. E 58, 4977 

(1998). 

8C. Chen and R. Pakter, Phys. Plasmas 5, 2203 (2000). 

9C. Chen and R. Pakter, “Electron Beam Halo Formation in High-Power Klystron 

Amplifiers,” IEEE Trans. Plasma Sci., in press (2000). 

10C. Chen and R. Pakter, “Halo Formation in Intense Electron Beams in High-Power 

Klystron Amplifiers,” in Intense Microwave Pulses VI, edited by H. E. Brandt, SPIE 

Proc. 3702, 21 (1999). 

11J. D. Jackson, Classical Electrodynamics, 2nd ed. (John Wiley & Sons, New York, 

1975), Ch. 3. 

12M. Hess, R. Pakter, and C. Chen, “Green’s function description of space charge in 

intense charged-particle beams,” Proceedings of the Particle Accelerator Conference, 



 24 

edited by A. Luccio and W. Mackay (Institute of Electrical and Electronics Engineers, 

Piscataway, NJ, 1999), p. 2752. 

13G. Barton, Elements of Green’s Functions and Propagation (Oxford University Press 

Inc., New York, 1995), p. 412-416. 

14I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products, 5th ed. 

(Academic Press, London, 1994), p. 464. 

15A. Gray and G. B. Mathews, A Treatise on Bessel Functions and Their Applications to 

Physics, 2nd ed.  (MacMillan and Co., London, 1952), p. 74. 



 25 

Figure Captions 

Fig. 1. Schematics of (a) line charge and (b) periodic array of charges in a perfectly 

 conducting cylinder. 

Fig. 2. Plots of the effective potential F r$b g  vs. $r  in the 2-D system for the choices of 

system parameters corresponding to: (a)ξ α 2 05= .  and $ .Pθ α 2 001= , and (b) 

ξ α 2 30= . and $ .Pθ α 2 001= . 

Fig. 3. Plots of the radial phase space in the 2-D system for the two cases with the same 

choices of the system parameters as those shown in Figs. 2(a) and 2(b). 

Fig. 4. Plots of the radial phase space in the 3-D system for the choices of system 

parameters corresponding to: (a) ξ α αθ
2 205 001= =. , $ .P  and α = 1 0. , and (b) 

ξ α αθ
2 201 0 01= =. , $ .P  and α = 1 0. . 

Fig. 5. Plots of the maximum value of the self-field parameter 2 2 2ω ωp c  for confinement 

as a function of normalized canonical angular momentum 2 2P m acθ ω  for 

several values of the aspect ratio a L  in the 3-D system.  Note that the 2-D 

system corresponds to the limit a L = ∞ , and the curve with a L = ∞  is obtained 

from (30). 

Fig. 6. Plots of the maximum value of the self-field parameter 2 2 2ω ωp c  for confinement 

as a function of the aspect ratio a L  for Pθ = 0  in both the 2-D and 3-D systems. 
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Fig. 2(b) 
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