26 research outputs found

    How do women prepare for pregnancy in a low-income setting? Prevalence and associated factors

    Get PDF
    Background Despite growing evidence of pregnancy preparation benefits, there is little knowledge on how women in developing countries prepare for pregnancy and factors influencing their preparedness for pregnancy. Here, we determine how women in Malawi prepare for pregnancy and factors associated with pregnancy preparation. Methods We used data from a previous cohort study comprising 4,244 pregnant mothers, recruited between March and December 2013 in Mchinji district, Malawi. Associations of pregnancy preparation with socio-demographic and obstetric factors were tested for using mixed effects ordinal regression, with the likelihood ratio and Wald's tests used for variable selection and independently testing the associations. Results Most mothers (63.9%) did not take any action to prepare for their pregnancies. For those who did (36.1%), eating more healthily (71.9%) and saving money (42.8%) were the most common forms of preparation. Mothers who were married (adjusted odds-ratio (AOR 7.77 (95% CI [5.31, 11.25]) or with no or fewer living children were more likely to prepare for pregnancy (AOR 4.71, 95% CI [2.89,7.61]. Mothers with a period of two to three years (AOR 2.51, 95% CI [1.47, 4.22]) or at least three years (AOR 3.67, 95%CI [2.18, 6.23]) between pregnancies were more likely to prepare for pregnancy than women with first pregnancy or shorter intervals. On the other hand, teenage and older (≥ 35 years old) mothers were less likely to prepare for pregnancy (AOR 0.61, 95%CI [0.47, 0.80]) and AOR 0.49 95%CI [0.33, 0.73], respectively). Conclusion While preconception care may not be formally available in Malawi, our study has revealed that over a third of mothers took some action to prepare for pregnancy before conception. Although this leaves around two thirds of women who did not make any form of pregnancy preparation, our findings form a basis for future research and development of a preconception care package that suits the Malawian context

    Differences among rice cultivars in their adaptation to low ionic strength solution with toxic level of aluminum that mimics tropical acid soil conditions

    Get PDF
    BACKGROUND: Spatio-temporal variations in malaria burden are currently complex and costly to measure, but are important for decision-making. We measured the spatio-temporal variation of clinical malaria incidence at a fine scale in a cohort of children under five in an endemic area in rural Chikhwawa, Malawi, determined associated factors, and monitored adult mosquito abundance. METHODS: We followed-up 285 children aged 6-48 months with recorded geolocations, who were sampled in a rolling malaria indicator survey, for one year (2015-2016). Guardians were requested to take the children to a nearby health facility whenever ill, where health facility personnel were trained to record malaria test results and temperature on the child's sick-visit card; artemisinin-based combination therapy was provided if indicated. The cards were collected and replaced 2-monthly. Adult mosquitoes were collected from 2-monthly household surveys using a Suna trap. The head/thorax of adult Anopheles females were tested for presence of Plasmodium DNA. Binomial logistic regression and geospatial modelling were performed to determine predictors of and to spatially predict clinical malaria incidence, respectively. RESULTS: Two hundred eighty two children, with complete results, and 267.8 child-years follow-up time were included in the analysis. The incidence rate of clinical malaria was 1.2 cases per child-year at risk; 57.1% of the children had at least one clinical malaria case during follow-up. Geographical groups of households where children experienced repeated malaria infections overlapped with high mosquito densities and high entomological inoculation rate locations. CONCLUSIONS: Repeated malaria infections within household groups account for the majority of cases and signify uneven distribution of malaria risk within a small geographical area

    Migraine day frequency in migraine prevention: longitudinal modelling approaches

    Get PDF
    Background Health economic models are critical tools to inform reimbursement agencies on health care interventions. Many clinical trials report outcomes using the frequency of an event over a set period of time, for example, the primary efficacy outcome in most clinical trials of migraine prevention is mean change in the frequency of migraine days (MDs) per 28 days (monthly MDs [MMD]) relative to baseline for active treatment versus placebo. Using these cohort-level endpoints in economic models, accounting for variation among patients is challenging. In this analysis, parametric models of change in MMD for migraine preventives were assessed using data from erenumab clinical studies. Methods MMD observations from the double-blind phases of two studies of erenumab were used: one in episodic migraine (EM) (NCT02456740) and one in chronic migraine (CM) (NCT02066415). For each trial, two longitudinal regression models were fitted: negative binomial and beta binomial. For a thorough comparison we also present the fitting from the standard multilevel Poisson and the zero inflated negative binomial. Results Using the erenumab study data, both the negative binomial and beta-binomial models provided unbiased estimates relative to observed trial data with well-fitting distribution at various time points. Conclusions This proposed methodology, which has not been previously applied in migraine, has shown that these models may be suitable for estimating MMD frequency. Modelling MMD using negative binomial and beta-binomial distributions can be advantageous because these models can capture intra- and inter-patient variability so that trial observations can be modelled parametrically for the purposes of economic evaluation of migraine prevention. Such models have implications for use in a wide range of disease areas when assessing repeated measured utility values

    Global patterns in monthly activity of influenza virus, respiratory syncytial virus, parainfluenza virus, and metapneumovirus: a systematic analysis

    Get PDF
    Background Influenza virus, respiratory syncytial virus, parainfluenza virus, and metapneumovirus are the most common viruses associated with acute lower respiratory infections in young children (= 65 years). A global report of the monthly activity of these viruses is needed to inform public health strategies and programmes for their control.Methods In this systematic analysis, we compiled data from a systematic literature review of studies published between Jan 1, 2000, and Dec 31, 2017; online datasets; and unpublished research data. Studies were eligible for inclusion if they reported laboratory-confirmed incidence data of human infection of influenza virus, respiratory syncytial virus, parainfluenza virus, or metapneumovirus, or a combination of these, for at least 12 consecutive months (or 52 weeks equivalent); stable testing practice throughout all years reported; virus results among residents in well-defined geographical locations; and aggregated virus results at least on a monthly basis. Data were extracted through a three-stage process, from which we calculated monthly annual average percentage (AAP) as the relative strength of virus activity. We defined duration of epidemics as the minimum number of months to account for 75% of annual positive samples, with each component month defined as an epidemic month. Furthermore, we modelled monthly AAP of influenza virus and respiratory syncytial virus using site-specific temperature and relative humidity for the prediction of local average epidemic months. We also predicted global epidemic months of influenza virus and respiratory syncytial virus on a 5 degrees by 5 degrees grid. The systematic review in this study is registered with PROSPERO, number CRD42018091628.Findings We initally identified 37 335 eligible studies. Of 21 065 studies remaining after exclusion of duplicates, 1081 full-text articles were assessed for eligibility, of which 185 were identified as eligible. We included 246 sites for influenza virus, 183 sites for respiratory syncytial virus, 83 sites for parainfluenza virus, and 65 sites for metapneumovirus. Influenza virus had clear seasonal epidemics in winter months in most temperate sites but timing of epidemics was more variable and less seasonal with decreasing distance from the equator. Unlike influenza virus, respiratory syncytial virus had clear seasonal epidemics in both temperate and tropical regions, starting in late summer months in the tropics of each hemisphere, reaching most temperate sites in winter months. In most temperate sites, influenza virus epidemics occurred later than respiratory syncytial virus (by 0.3 months [95% CI -0.3 to 0.9]) while no clear temporal order was observed in the tropics. Parainfluenza virus epidemics were found mostly in spring and early summer months in each hemisphere. Metapneumovirus epidemics occurred in late winter and spring in most temperate sites but the timing of epidemics was more diverse in the tropics. Influenza virus epidemics had shorter duration (3.8 months [3.6 to 4.0]) in temperate sites and longer duration (5.2 months [4.9 to 5.5]) in the tropics. Duration of epidemics was similar across all sites for respiratory syncytial virus (4.6 months [4.3 to 4.8]), as it was for metapneumovirus (4.8 months [4.4 to 5.1]). By comparison, parainfluenza virus had longer duration of epidemics (6.3 months [6.0 to 6.7]). Our model had good predictability in the average epidemic months of influenza virus in temperate regions and respiratory syncytial virus in both temperate and tropical regions. Through leave-one-out cross validation, the overall prediction error in the onset of epidemics was within 1 month (influenza virus -0.2 months [-0.6 to 0.1]; respiratory syncytial virus 0.1 months [-0.2 to 0.4]).Interpretation This study is the first to provide global representations of month-by-month activity of influenza virus, respiratory syncytial virus, parainfluenza virus, and metapneumovirus. Our model is helpful in predicting the local onset month of influenza virus and respiratory syncytial virus epidemics. The seasonality information has important implications for health services planning, the timing of respiratory syncytial virus passive prophylaxis, and the strategy of influenza virus and future respiratory syncytial virus vaccination. Copyright (C) 2019 The Author(s). Published by Elsevier Ltd

    Distinct climate influences on the risk of typhoid compared to invasive non-typhoid Salmonella disease in Blantyre, Malawi

    No full text
    Invasive Salmonella diseases, both typhoid and invasive non-typhoidal Salmonella (iNTS), are seasonal bloodstream infections causing important morbidity and mortality globally in Africa. The reservoirs and transmission of both are not fully understood. We hypothesised that differences in the time-lagged relationships of rainfall or temperature with typhoid and iNTS incidence might infer differences in epidemiology. We assessed the dynamics of invasive Salmonella incidence over a 16-year period of surveillance, quantifying incidence peaks, seasonal variations, and nonlinear effects of rainfall and temperature exposures on the relative risks of typhoid and iNTS, using monthly lags. An increased relative risk of iNTS incidence was short-lasting but immediate after the onset of the rains, whereas that of typhoid was long-lasting but with a two months delayed start, implying a possible difference in transmission. The relative-risk function of temperature for typhoid was bimodal, with higher risk at both lower (with a 1 month lag) and higher (with a ≥4 months lag) temperatures, possibly reflecting the known patterns of short and long cycle typhoid transmission. In contrast, the relative-risk of iNTS was only increased at lower temperatures, suggesting distinct transmission mechanisms. Environmental and sanitation control strategies may be different for iNTS compared to typhoid disease

    Variation in excess all-cause mortality by age, sex, and province during the first wave of the COVID-19 pandemic in Italy

    No full text
    Although previous evidence suggests that the infection fatality rate from COVID-19 varies by age and sex, and that transmission intensity varies geographically within countries, no study has yet explored the age-sex-space distribution of excess mortality associated with the COVID pandemic. By applying the principles of small-area estimation to existing model formulations for excess mortality, this study develops a novel method for assessing excess mortality across small populations and assesses the pattern of COVID excess mortality by province, year, week, age group, and sex in Italy from March through May 2020. We estimate that 53,200 excess deaths occurred across Italy during this time period, compared to just 35,500 deaths where COVID-19 was registered as the underlying cause of death. Out of the total excess mortality burden, 97% of excess deaths occurred among adults over age 60, and 68% of excess deaths were concentrated among adults over age 80. The burden of excess mortality was unevenly distributed across the country, with just three of Italy’s 107 provinces accounting for 32% of all excess mortality. This method for estimating excess mortality can be adapted to other countries where COVID-19 diagnostic capacity is still insufficient, and could be incorporated into public health rapid response systems

    Short-term changes in anemia and malaria parasite prevalence in children under 5 years during one year of repeated cross-sectional surveys in rural Malawi

    No full text
    In stable transmission areas, malaria is the leading cause of anemia in children. Anemia in children is proposed as an added sensitive indicator for community changes in malaria prevalence. We report short-term temporal variations of malaria and anemia prevalence in rural Malawian children. Data from five repeated cross-sectional surveys conducted over 1 year in rural communities in Chikwawa District, Malawi, were analyzed. Different households were sampled per survey; all children, 6-59 months, in sampled household were tested for malaria parasitemia and hemoglobin levels using malaria rapid diagnostic tests (mRDT) and Hemocue 301, respectively. Malaria symptoms, recent treatment (2 weeks) for malaria, anthropometric measurements, and sociodemographic details were recorded. In total, 894 children were included from 1,377 households. The prevalences of mRDT positive and anemia (Hb < 11 g/dL) were 33.8% and 58.7%, respectively. Temporal trends in anemia and parasite prevalence varied differently. Overall, unadjusted and adjusted relative risks of anemia in mRDT-positive children were 1.31 (95% CI: 1.09-1.57) and 1.36 (1.13-1.63), respectively. Changes in anemia prevalence differed with short-term changes in malaria prevalence, although malaria is an important factor in anemia

    Access and adequate utilization of malaria control interventions in rural Malawi: a descriptive quantitative study

    No full text
    BACKGROUND: Despite the availability of cost effective malaria control interventions, such as insecticide-treated bed nets (ITN), diagnosis and effective treatment of malaria, and intermittent preventive treatment during pregnancy (IPTp), the lack of equitable access and coverage affect utilization of these interventions in rural communities. Aggregated rates of access and utilization of malaria interventions in national surveys mask substantial variations in intervention coverage. Utilization of interventions and factors affecting utilization need investigation in rural communities. METHODS: One year of quantitative data collected from a rolling Malaria Indicator Survey (April 2015-April 2016) in Chikhwawa District, Malawi, before the ITN distribution campaign, were analysed. Univariate analyses were used to quantify rates of ITN usage, care-seeking for fever in children aged 6-59 months and women aged 15-49 years and IPTp uptake (for women aged 15-49 years with a recent delivery). Results were compared to national survey estimates; factors associated with these outcomes were determined using multivariate regression models. RESULTS: A total of 2046 participants were included from 1328 households; 56.6% were women aged 15-49 years and 43.4% were children aged 6-59 months. Reported ownership of at least one ITN per household and under-five children ITN use the previous night were 35.3 and 33.5% compared to 70.2 and 67.1%, respectively, in the national survey; ITN use was higher in high wealth quintile households than low quintile ones. For participants with recent fever, 37.6 and 19.5% sought care and sought care within 24 h, respectively. Care-seeking was lower for febrile women than febrile children [aOR, 95% CI 0.53 (0.35-0.81)]. Uptake of two and three or more doses of IPTp were 40.6 and 15.0%, respectively, among women with a pregnancy in the last 2 years. CONCLUSION: To achieve effective malaria control, fine-scale or district-based surveillance should be used to identify and target communities requiring scaling up of interventions. Qualitative research and a participatory community approach should be used to address behavioural factors affecting how people make use of interventions
    corecore