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Variation in excess all‑cause 
mortality by age, sex, 
and province during the first wave 
of the COVID‑19 pandemic in Italy
Nathaniel J. Henry 1*, Ahmed Elagali2, Michele Nguyen 3, Michael Give Chipeta 1 & 
Catrin E. Moore 1

Although previous evidence suggests that the infection fatality rate from COVID‑19 varies by age 
and sex, and that transmission intensity varies geographically within countries, no study has yet 
explored the age‑sex‑space distribution of excess mortality associated with the COVID pandemic. By 
applying the principles of small‑area estimation to existing model formulations for excess mortality, 
this study develops a novel method for assessing excess mortality across small populations and 
assesses the pattern of COVID excess mortality by province, year, week, age group, and sex in Italy 
from March through May 2020. We estimate that 53,200 excess deaths occurred across Italy during 
this time period, compared to just 35,500 deaths where COVID‑19 was registered as the underlying 
cause of death. Out of the total excess mortality burden, 97% of excess deaths occurred among 
adults over age 60, and 68% of excess deaths were concentrated among adults over age 80. The 
burden of excess mortality was unevenly distributed across the country, with just three of Italy’s 107 
provinces accounting for 32% of all excess mortality. This method for estimating excess mortality can 
be adapted to other countries where COVID‑19 diagnostic capacity is still insufficient, and could be 
incorporated into public health rapid response systems.

Italy received international attention as one of the first countries outside of China to experience a major COVID-
19 outbreak. On March 9, 2020, Italy announced a nationwide lockdown to stem community transmission, and 
deaths peaked two weeks later during the week of March  251. After that peak, deaths declined for the following 
two months, and lockdown restrictions were gradually eased starting in late  May2. In total, between February and 
August 2020, approximately 35,500 COVID-19 deaths were registered across Italy, equivalent to approximately 
60 deaths per 100,000  people3.

Aside from the timing and magnitude of the first wave of COVID-19 transmission within Italy, two notable 
features set its COVID-19 epidemic apart from those in other European countries. First, registered COVID-19 
cases and deaths were unevenly distributed across the regions of  Italy4, and that cause-specific mortality from 
COVID-19 varied by age and  sex5. Registered COVID-19 deaths were highest in the northern regions of the 
country, particularly in the region of Lombardy, where the registered COVID-19 death total amounted to over 
160 deaths per 100,000 population (Fig. 1). Another salient feature of the Italian epidemic was the early recogni-
tion among health authorities that registered COVID-19 deaths under-counted the full mortality burden of the 
epidemic. In May 2020, the Italian National Institute of Statistics (Istat) reported that while 13,700 COVID-19 
deaths had been registered across Italy between 20 February and 31 March, deaths from any cause had increased 
by 25,300 compared to an expected baseline during the same time period, suggesting that the full mortality 
burden of the COVID-19 epidemic was nearly double what had been previously  reported6.

Istat and other research groups drew conclusions about the mortality burden of the COVID-19 pandemic 
based on a series of excess mortality analyses. Excess mortality analyses attempt to measure the net effect of a 
discontinuity, such as a COVID-19 outbreak, on all-cause mortality. This is a two-step process: first, the investi-
gator constructs an estimated baseline number of deaths expected during the period in question. While various 
methods have been used in the past to construct this  baseline7–9, previous studies in Italy have averaged the 
number of deaths recorded by week in the years from 2015 through 2019 to generate a baseline estimate for the 
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same weeks in  20202,10. Next, the investigator compares that expected baseline with the count of recorded deaths 
during the same time period. Excess deaths, a count, are measured as the difference between the observed death 
count and the expected baseline. Standardized mortality ratios (SMRs) are measured as the ratio between the 
observed death count and the expected  baseline11,12. Excess mortality analyses of the COVID-19 pandemic are 
becoming widely used in the media: among others, the Economist, the Financial Times and the New York Times 
have estimated excess mortality across dozens of countries in Europe, the Americas, and  Asia13–15. Previous 
investigations have also examined how excess mortality analysis can capture deaths caused by COVID-19 but 
attributed to other causes, as well the indirect mortality burden of the COVID-19  pandemic8,16.

This study explores another central issue for excess mortality estimation: how can we detect increases in 
mortality at the local level or across multiple age groups, where the expected number of baseline deaths in each 
subpopulation of interest is relatively low? This question addresses a tension central to many forms of public 
health surveillance, where the imperative to identify clustering and high-risk subgroups in health surveillance 
data must be balanced against reduced study power and possible biases associated with small  samples17. Any 
suitable approach for estimating small-group excess mortality must quantify uncertainty due to stochastic vari-
ation as well as limited data informing the baseline. Even at the national level, weekly estimates of COVID-19 
excess mortality presented without uncertainty intervals can leave viewers confused about what constitutes a 
meaningful departure from the baseline.

To better understand the relationship between registered COVID-19 deaths and excess mortality across Italy, 
we developed a model to estimate excess mortality by age group, sex, and week across the country’s 107 provinces. 
Our approach estimated counterfactual baseline mortality rates for each of these groups from March through 
August 2021, based on mortality rates and predictive covariates observed from January 2015 through February 
2021. Our baseline mortality model combined elements from a widely-used Poisson generalized linear modeling 
(GLM) strategy for mortality  estimation9; a structured province-year-age random effect that draws power from 
local correlations in mortality across those three dimensions, based on disease mapping  principles18; and a Fou-
rier curve-fitting method to fit capture seasonal trends in age-specific all-cause  mortality7. Once baseline mortal-
ity was estimated for each week and subpopulation in the study period, we compared these estimates to observed 
counts from vital records over the same period while preserving uncertainty in the expected baseline mortality.

This study contributes two methodological advancements to existing literature on excess mortality analysis 
and mortality mapping. First, this is the first study to our knowledge to apply disease mapping methods to esti-
mate excess mortality. Second, whereas previous studies have applied Fourier curve-fitting methods to estimate 
seasonality among large populations at the national and state levels, this study combines Fourier seasonality 
analysis with a space–time smoothing model to estimate seasonality of mortality among small populations. We 
apply these modeling methods to estimate excess mortality and SMRs across Italy at an unprecedented level of 

Figure 1.  Registered COVID-19 deaths per 100,000 population by Italian region prior to August 31, 2020. 
Nationally, 35,500 deaths were registered during this time, or approximately 59 deaths per 100,000 population.
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detail. Here, we present major findings on excess deaths (the difference between observed and baseline death 
counts) as well as SMRs (the ratio between observed and expected deaths) across subpopulations of Italy.

Results
Excess mortality exceeds registered COVID‑19 deaths. At the national level, the aggregated results 
from our model generally agreed with previous national studies on the timing and magnitude of excess deaths 
associated with the COVID-19 pandemic across Italy. Figure  2 shows the estimated weekly death count (in 
brown) as well as the observed weekly death count (in black) from 26 February through 31 August 2020 across 
Italy. In line with other studies, the model results suggest that excess mortality peaked on the week of March 
25, on the same week as the peak in registered COVID-19 deaths, and then consistently fell until approximately 
returning to baseline by the end of May 2020, coinciding with the lifting of most lockdown measures across 
 Italy2. At no point between June and August 2020 did the observed death count exceed the upper bound of the 
95% uncertainty interval for baseline deaths: as a result, the remainder of this section will focus on excess mor-
tality during the 13-week period from 26 February through 26 May 2020. During these 13 weeks, we estimate 
that 53,200 excess deaths (95% uncertainty interval 26,500–79,700) were associated with the COVID-19 pan-
demic, compared with 35,500 deaths registered with COVID-19 as the underlying cause during the same period.

Figure 2.  Top : Predicted baseline and observed deaths aggregated nationwide across Italy, March through 
August 2020. Bounds of the 95% uncertainty interval for predicted baseline deaths are shaded in light brown. 
Bottom : Estimated weekly excess deaths across Italy from March through May 2020, in red, compared with 
medically-certified deaths from COVID-19, in green.
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Excess deaths and sex. Our findings can be aggregated across sexes and provinces to understand the age 
structure of excess mortality across Italy. Figure 3 plots weekly excess deaths across the five modeled age catego-
ries, while Table 1 lists estimated excess deaths by age and sex grouping at the national level. Excess deaths were 
overwhelmingly concentrated in older age groups: of the estimated 53,200 excess deaths in Italy from March 
through May 2020, an estimated 51,600, or 97.0%, of these excess deaths occurred among adults aged 60 and 
above, while 36,400, or 68%, occurred in adults older than age 80. Among adults aged 90 and above, women 
experienced 11,000 (5800–16,400) excess deaths, more than double the 4400 (2000–6900) excess deaths among 
men in the same age group; this reflects the sex composition of the oldest age group, where women made up 
72.6% of the over-90 population in January 2020.

From March through May 2020, 18 province-age groupings observed significantly fewer deaths than the 
expected baseline. Of these significantly lower mortality observations, 11 were among the 0–59 age group. These 
negative excess deaths were included in calculations of total excess mortality nationwide, but do not significantly 
change the national totals or the age distribution of excess mortality. Tables summarizing excess mortality by age 
and province grouping have been provided in Supplementary Appendix S1.

The outsized proportion of excess deaths observed within older age categories reflects two aspects of age-
structured mortality across Italy during this period: baseline mortality is highest in older age groups even in nor-
mal years, and these age groups also experienced a larger relative increase in mortality during the study period. 

Figure 3.  Mean estimates for weekly excess deaths across Italy by age group, March through May 2020. Two 
nationwide age group breakdowns are shown to the right for comparison: the national age distribution as of 1 
January 2020, and the proportion of nationwide deaths that occurred in each age group during the years 2015 
through 2019.

Table 1.  Estimated excess mortality by age and sex grouping, aggregated to the national level for the weeks 
of 26 February through 26 May 2020. Nationally, all age-sex groupings experienced significantly elevated 
mortality compared to the expected baseline during this period.

Sex Age Excess deaths (95% UI) Standardized mortality ratio (95% UI) Population on 1 Jan 2020, millions (% total)

Males 0–59 1081 (918–1240) 1.16 (1.13–1.19) 21.37 (35.5%)

Females 0–59 517 (401–627) 1.13 (1.1–1.16) 21.00 (34.9%)

Males 60–69 2600 (1152–3990) 1.29 (1.11–1.52) 3.55 (5.9%)

Females 60–69 947 (109–1750) 1.19 (1.02–1.41) 3.87 (6.4%)

Males 70–79 7703 (4639–10,730) 1.42 (1.22–1.71) 2.75 (4.6%)

Females 70–79 3991 (1885–6048) 1.33 (1.13–1.6) 3.25 (5.4%)

Males 80–89 10,649 (4574–16,946) 1.36 (1.13–1.72) 1.45 (2.4%)

Females 80–89 10,308 (3675–17,110) 1.32 (1.09–1.67) 2.20 (3.7%)

Males 90 4405 (1979–6879) 1.36 (1.14–1.71) 0.22 (0.4%)

Females 90 11,043 (5784–16,432) 1.41 (1.18–1.76) 0.58 (1.0%)
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Figure 4 maps the standardized mortality ratio, or the ratio between observed and baseline mortality rates, by 
age group and province across the entire 13-week period from 26 February through 26 May 2020. Note that the 
standardized mortality ratio uniformly increases across the northern provinces of Italy when moving from the 
0–59 age group to the 60–69 and 70–79 age groups, and remain heightened in the oldest age groups, with some 
provinces in Lombardy and Emilia Romagna experiencing over three times the expected baseline mortality in 
older age groups. The greater increase in excess mortality among older age groups can also be expressed by com-
paring the proportion of excess mortality with each age group with that age group’s share of all-cause mortality 
in the years 2015 through 2019. Adults over age 60 accounted for 92.6% of all deaths in the years 2015–2019 
(2.99 million deaths out of 3.23 million total), but 97.0% of all excess mortality in March through May of 2020 
(51,600 of 53,200 excess deaths). Similarly, adults over age 80 experienced 63.4% of all deaths in previous years 
(2.04 million deaths out of 3.23 million), but 68.4% of excess mortality (36,400 of 53,200 excess deaths).

Spatial concentration. This model is also able to characterize spatial variation in excess mortality during 
the first wave of the COVID-19 epidemic in Italy. From March through May 2020, just three provinces—Milan, 
Bergamo, and Brescia, all in the Lombardy region—accounted for 32% of all excess deaths in Italy, with just 9% 
of the country’s total population. By including just four other provinces across the Piedmont, Emilia-Romagna, 
and Liguria regions in northern Italy, nearly one-half of all excess deaths are captured in a region that makes 
up just 16% of Italy’s population. Expanding further, the 22 provinces with the highest number of excess deaths 
account for three-quarters of all excess mortality, but just 30% of Italy’s national population. Figure 5 shows the 
locations of these province groupings and each group’s marginal contribution to the total excess mortality curve 
from March through May 2020.

Diverse experiences of the first wave. Comparing Figs. 2, 4, and 5, both the timing and geographical 
distribution of excess mortality during March through May 2020 seem to follow the time pattern of registered 
COVID-19 mortality by region in that same period: both peaked during the week of 25 March and were con-
centrated in the northern regions of the country, particularly Lombardy. Figure 6 complicates this analysis by 
demonstrating two features of excess mortality that are apparent at the province level, but not the regional or 

Figure 4.  Map of standardized mortality ratios by age group and province over the entire period of March 
through May 2020. In these figures, significance is defined as falling outside of the 95% uncertainty interval for 
baseline mortality for a given age group and province during this period.
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Figure 5.  Concentration of excess mortality burden among the 3, 7, and 22 provinces with the greatest number 
of excess deaths, out of 107 provinces total. These province groupings respectively accounted for over 25%, 50%, 
and 75% of the national excess mortality burden between March and May 2020. The graph on the bottom left 
displays mean estimated excess deaths by province grouping and week during this period.
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national levels. The first feature identifies the geographic center of the peak excess mortality during the COVID-
19 first wave. While most news outlets and previous studies have identified Lombardy region as the center of the 
COVID-19 outbreak, the top-right panel of Fig. 6 suggests that the mortality rate increased most in provinces on 
the border between southwest Lombardy and northwest Emilia-Romagna, adjacent to the Piedmont and Liguria 
regions. This border effect suggests that the 107 provinces of Italy may be a more informative unit of analysis for 
both registered COVID-19 deaths and excess mortality than the country’s 20 regions.

A province-level analysis also demonstrates that within high-burden regions, neighboring provinces experi-
enced varying patterns of excess mortality during the first wave of COVID-19. The bottom two panels of Fig. 6 
show excess mortality curves for Lodi and Varese, two provinces that both share a border with Milan. Excess 
mortality in Lodi peaked on the week of March 11, with an SMR of over 6 times the baseline mortality rate; 
meanwhile, excess mortality in Varese peaked a month later, on the week of 8 April, with mortality for that week 
peaking at over double the baseline rate.

Discussion
In this study, we explored whether an application of small-area methods to excess mortality analysis could 
identify previously unreported trends in the pattern of excess mortality across Italy during the first wave of the 
COVID-19 pandemic. Our findings suggest that a small-area model yields estimates of excess mortality that 
are consistent with alternative calculation strategies at the national level, while offering new insights into the 
uneven distribution of excess mortality by age group, sex, province, and week across the country. Excess mortality 
estimates generated by this model suggest that a disproportionate majority of excess deaths occurred in adults 
age 60 and older, due to both the higher level of baseline mortality in these age groups and higher elevation of 
mortality above baseline during the first three months of the COVID-19 epidemic. This analysis also revealed a 
highly uneven spatial distribution of excess mortality: half of excess deaths were contained within just seven of 
Italy’s 107 provinces, accounting for less than 16% of the population. While the general nationwide pattern of 
excess mortality reflected the timing and geographical concentration of registered COVID-19 deaths, regional 
analyses obscure meaningfully different excess mortality trends across neighboring provinces within a region.

This study extends regression-based methods for estimating age-structured baseline mortality by incorporat-
ing location, year, and week structured random effects within a Bayesian hierarchical  framework7,19. This method 
was found to substantially outperform a simpler approach, in which average death counts across past years are 
used as the baseline, for predicting weekly excess mortality. It appears that a structured space–time approach 

Figure 6.  Excess deaths vary across provinces within the Lombardy region. Top left : Map of Northern Italy 
showing the week when province’s excess mortality was estimated to peak during the first wave of COVID-19 
in March through May 2020. Top right : Map of the peak weekly standardized mortality ratio (SMR) for each 
province across Northern Italy across all weeks in March through May 2020. Bottom left : Estimated excess 
deaths by week for Lodi province. Bottom right : Estimated excess deaths by week for Varese province.
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stabilizes stochastic variation across relatively small death counts by province and week, producing a smoother 
mortality risk surface while still accounting for meaningful trends captured by covariates. Because this approach 
structures uncertainty in a way that allows for principled aggregation, the results can indicate high-risk subgroups 
by age or location, and identify local variation in excess mortality that might be masked at a less detailed level, 
without overstating the confidence of findings for individual subpopulations.

This method for measuring excess mortality also has several limitations that should be noted. Because the 
process for estimating baseline deaths is more complicated and requires additional inputs compared to a sim-
pler averaging method, it is less accessible to a wide range of users. The model for estimating baseline mortality 
assumes the same relationship between each covariate and mortality across age groups. In reality, some covariates 
may have a differential effect by age—for example, temperature may have more of an impact on mortality in older 
age groups due to the greater prevalence of risk factors that inhibit the body’s thermoregulatory  response20,21. 
This limitation is partly addressed by the separate harmonic seasonality fits for each age group. This study is 
also limited to the set of covariates which can be estimated by province and year: other covariates that may be 
predictive of all-cause mortality, such as the prevalence of environmental and occupational risk factors, were 
excluded due to lack of availability at the province level. While the population groupings reported in this study 
could be divided into even more granular units, any small-area investigation must protect the privacy rights of 
 individuals22. Finally, as described in the Introduction, findings from excess mortality analyses must be care-
fully interpreted due to the many possible sources for changing mortality which are not accounted for in the 
modeling strategy.

Additional mechanisms for public health monitoring are needed to catch future resurgences of COVID-19 
and future epidemics. In the context of high-income countries such as Italy, where high-quality mortality data has 
been rapidly prepared and cleaned for public use, this approach to small-area excess mortality analysis could be 
employed as a routine surveillance tool, allowing health officials to identify high-mortality subgroups in a popu-
lation and to introduce intervention measures in a timely manner. This approach could also be applied to assess 
patterns of excess all-cause mortality across countries such as Brazil, Mexico, and Colombia, which maintain 
nearly complete vital registration  systems23, but where increases in COVID-19 mortality may have outstripped 
diagnostic capacity early in the  pandemic24,25. Combining this excess mortality data with cause-of-death infor-
mation by province would also reveal new insights about the local drivers of excess mortality. We hope that this 
study provides a new avenue to convert excess mortality analysis into a tool for decision-making in public health.

Methods
Overview. We fit a spatially-explicit hierarchical model with fixed effects by age group and for seven covari-
ates, correlated age-province-year structured random effects, and harmonic curves capturing seasonal variation 
for each age group and province. Separate models were fit for each sex. We fit this model using mortality and 
population data from 1 January 2015 through 25 February 2020, then generated 1000 predictive samples of the 
baseline mortality rate for each sex, age group, and province for the weeks of 26 February through 31 August 
2020. For each of the 1000 sampled draws, we compared the baseline mortality rate with the observed mortal-
ity rate to estimate a Standardized Mortality Ratio, and compared the predicted baseline deaths with observed 
deaths to estimate excess deaths from all causes.

All methods were carried out in accordance with the relevant guidelines and regulations governing the use 
of public data sources. The code used to produce this model can be accessed online at https:// github. com/ njhen 
ry/ covid emr.

Data. All-cause mortality and population data were downloaded from Istat, the Italian National Institute of 
Statistics. As of 22 October 2020, complete mortality data covering all provinces and municipalities of Italy over 
the time period 1 January 2015 through 31 August 2020 was available for download from  Istat26. The number 
of deaths over this time period were recorded by year, month, day, Italian municipality, sex, and five-year age 
group. For the purposes of analysis, these observations were aggregated by sex, Italian province, age group, and 
week of the year. The five age groups used in this analysis were 0–59 years, 60–69 years, 70–79 years, 80–89 years, 
and 90+ years of age. These age groups were chosen based on the prior knowledge that the large majority of both 
all-cause mortality and registered COVID-19 deaths occurred among adults aged 60 and above. Weeks of the 
year were assigned based on the numeric day of the year, where January 1st of each year was assigned as the first 
day of the first week. The 365th and 366th days of the year were assigned to week 52, with the hierarchical model 
adjusting for observed weeks with more than seven days.

Population data by sex, age, and province for the years 2015 through 2020 was downloaded from the Istat 
web data  portal27. Population counts were aggregated by sex, province, year, and the five age groups listed above.

We downloaded or extracted data for each of seven covariates, listed below in Table 2. Covariates were selected 
based on previous evidence of association between the covariate and all-cause mortality in a high-income con-
text. Further information supporting the inclusion of each covariate is included in Supplementary Appendix S1. 
After extraction, all covariates were normalized and rescaled to have a mean of zero and a standard deviation 
of 1 across all data observations.

Space–time model. To construct a mortality baseline for the months of March through August 2020 that 
incorporated multiple sources of uncertainty, we fit a small area model with age and covariate fixed effects, 
correlated province-year-age errors, and harmonic terms to capture seasonality within each age grouping and 
province. Because the age structure of mortality might differ by sex in Italy, two models were fit for males and 
females. For a particular sex, the number of deaths in a given province p , age group a , year t  , and week of the 
year w was assumed to follow a Poisson distribution:

https://github.com/njhenry/covidemr
https://github.com/njhenry/covidemr
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In the formulation above, D is the number of observed deaths, N is the population, and r is the underlying 
mortality rate per person-week. The quantity r is then fit in log space to a space–time surface which varies by 
province, age, year, and week:

The first three terms on the right-hand side of this equation capture age and covariate fixed effects, corre-
sponding to a discrete-time proportional hazards model where the baseline hazard varies by age  group28,29. In 
this specification, αk is the weekly baseline hazard for each of the five age groups, while Iα is a boolean variable 
that is 1 when the age group index of an observation is equal to k and zero otherwise. Fixed effects for the covari-
ate design matrix Xp,a,t,w are denoted by �β , a vector of length seven. Together, these terms correspond with a 
multivariate regression approach to estimating baseline  mortality19.

The term Zp,a,t is a structured random effect that accounts for residual variation across provinces, age groups, 
and years that is not captured by the age or covariate fixed effects. Z is structured as a Gaussian process with 
mean zero and covariance matrix K  , where K  is a separable process across the dimensions of space, age, and 
time: K = �p ⊗�a ⊗�t . The spatial covariance structure �p corresponds to a conditional autoregressive (CAR) 
process in  space30, while the age and temporal covariance structures both correspond to discrete autoregressive 
processes of order 1. Separable covariance structures have been widely used in the fields of ecology and public 
health to construct models across space, time, and other  dimensions31,32, and have been found to fit a wide variety 
of space–time covariance  structures33.

The term fp,a(w) refers to a set of harmonic functions that are fit to account for weekly variation in mortality 
not captured by covariates. A separate function is fit for each age group and province to account for the fact that 
seasonal variation in mortality may be driven by different factors across space and by age group. Each function 
is tuned to fit the parameters A and B to the following harmonics:

This harmonic series, which adapts principles from Fourier analysis, is the basis for a classic model for 
predicting seasonality in flu mortality developed by Robert  Serfling7. In Serfling’s original formulation as well 
as more recent excess mortality papers, seasonality was fit using two Fourier  terms8,34. We performed five-fold 
cross-validation estimate the best grouping variables and harmonic terms for seasonal curve fits. Based on the 
metrics of out-of-sample mean squared error and coverage, we found that the model performed best when 
seasonal curves were fit separately by province and age group, using two Fourier terms.

We assigned priors to all model parameters and then fit the model using the Laplace approximation for 
mixed-effect parameter  estimation35,36. The model was fit in R v.4.0.3 using the package Template Model Builder 
v.1.7.1835,37.

Compiling and interpreting results. Using the maximum a posteriori predictions and joint precision 
matrix for all parameters, we generated 1000 samples for all model parameters using a multivariate-normal 
approximation of the posterior predictive distribution. These parameter samples were then entered into the 
original model to construct 1000 draws or “candidate maps” estimating the mortality rate across all provinces, 
age groups, and weeks in the study  period38. Although the model was fit to data from 1 January 2015 through 
25 February 2020, the fitted parameter fixed effects, random effects, and seasonality terms could all be applied 
forward to estimate 1000 draws of predicted baseline mortality from 26 February through 31 August 2020. All 
subsequent calculations were performed across draws to preserve the correlation structure within draws as well 
as the model uncertainty across draws.

Dp,a,t,w ∼ Poisson(Np,a,t,w rp,a,t,w)

log(rp,a,t,w) ∼

5
∑

k=1

[Iα αk] + �β Xp,a,t,w + Zp,a,t + fp,a(w)

fp,a(w) =

2
∑

j=1

[

Ap,a,j sin

(

2π jw

52

)

+ Bp,a,j cos

(

2π jw

52

)]

Table 2.  Covariates used to estimate baseline mortality by age group, sex, province, and week across Italy from 
January 2015 through August 2020. The source and space-time resolution of each covariate is listed.

Covariate Source Varies over

Total fertility rate Istat Province, year

First quarter unemployment Istat Province, sex, year

Proportion of eligible households receiving at-home social services Istat Province, year

Proportion of households with taxable annual income below 10,000 Euros Istat Province, year

Average driving time to the nearest health facility Malaria Atlas Project Province

Average elevation of residence US Geological Survey Province

Temperature MeteoStat Province, year, week
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We compared the distribution of predicted mortality rates with observed mortality rates, calculated as 
observed deaths divided by population, to calculate 1000 draws of standardized mortality ratios (SMRs) for 
each province-age-sex-year-week grouping g using the following formula:

We also multiplied the predicted mortality rates by the population in each province-age-sex-year grouping 
to calculate predicted baseline death counts for each draw. We then calculated 1000 draws of excess deaths for 
each grouping:

In the results section below, draws for predicted mortality, SMRs, and excess deaths are summarized using 
the mean and 95% uncertainty interval bounds. The 95% uncertainty interval is reported as the 2.5th percentile 
and 97.5th percentile of values across 1000 draws.

Model validation. We used five-fold cross validation to compare predictive performance across multiple 
model specifications and to compare predictive performance with simpler models for calculating excess mor-
tality. Each fold was created by fitting the model without data from the weeks in March through December for 
each of the years 2015 through 2019, then comparing predicted values for the held out weeks with the observed 
values. This holdout strategy mirrors the process we hope to capture in the months of March through August 
2020 in the counterfactual where COVID-19 did not change the pattern of mortality across Italy.

Because the expected number of deaths in a given province-age-sex-year-week groupings can be very low, 
particularly in lower age groups, we aggregated all out-of-sample observations across four-week intervals while 
preserving the other groupings. We then calculated the difference between the out-of-sample recorded deaths 
and the modeled mortality, and calculated summary metrics: root mean squared error, coverage of the 95% 
uncertainty intervals, and relative squared error when compared to a simpler model that uses the average mor-
tality rate across all other years.

We found that the out-of-sample root mean squared error for the best-performing model was 2.32E−5, 
compared to an average weekly mortality rate of 2.05E−4 across all age groups, suggesting a reasonably good 
fit for the model’s mean estimates. The out-of-sample relative squared error was 0.330 compared to the simple 
method of averaging weekly values across other years, suggesting that this predictive model substantially out-
performed the simpler alternative for the years 2015–2019 even when an entire year of data was held out. The 
in-sample relative squared error compared to the simpler averaging method was 0.273, a much lower ratio of 
error, which indicates that the model provides a more flexible fit to the data than the simpler averaging strategy. 
The out-of-sample coverage of the 95% uncertainty interval was 99.1%, indicating that the predicted uncertainty 
bounds are conservative. The procedure for out-of-sample validation and results are discussed in more detail in 
Supplementary Appendix S1.

Visualization. All figures and maps in this study were created using the ggplot2 package in R v.4.0.337,39.

Data availability
All data sources used in this analysis are publicly available online and are linked in Supplementary Appendix S1. 
The code repository accompanying this paper, available online at https:// github. com/ njhen ry/ covid emr, contains 
detailed instructions for downloading and formatting each data source.
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