256 research outputs found

    Proximity DC squids in the long junction limit

    Full text link
    We report the design and measurement of Superconducting/normal/superconducting (SNS) proximity DC squids in the long junction limit, i.e. superconducting loops interrupted by two normal metal wires roughly a micrometer long. Thanks to the clean interface between the metals, at low temperature a large supercurrent flows through the device. The dc squid-like geometry leads to an almost complete periodic modulation of the critical current through the device by a magnetic flux, with a flux periodicity of a flux quantum h/2e through the SNS loop. In addition, we examine the entire field dependence, notably the low and high field dependence of the maximum switching current. In contrast with the well-known Fraunhoffer-type oscillations typical of short wide junctions, we find a monotonous gaussian extinction of the critical current at high field. As shown in [15], this monotonous dependence is typical of long and narrow diffusive junctions. We also find in some cases a puzzling reentrance at low field. In contrast, the temperature dependence of the critical current is well described by the proximity effect theory, as found by Dubos {\it et al.} [16] on SNS wires in the long junction limit. The switching current distributions and hysteretic IV curves also suggest interesting dynamics of long SNS junctions with an important role played by the diffusion time across the junction.Comment: 12 pages, 16 figure

    Análisis de preferencias turísticas: un enfoque innovador

    Get PDF
    Most of the decisions concerning tourism are made in a context of uncertainty, and on several occasions the consequences of the choice are not known with certainty, or even there is missing information on this matter. For these reasons, the fuzzy set theory is an appropriate tool for their treatments.In this paper we show, through a case study, an alternative model for the analysis of tourist preferences of a segment of individuals based on the concept of fuzzy consideration set.La mayor parte de las decisiones referidas a turismo se toman en un contexto de incertidumbre, y en muchas oportunidades no se conocen con certeza las consecuencias de la elección, ni se posee toda la información. Por estas razones la teoría de conjuntos borrosos resulta una herramienta apropiada para su tratamiento.En este trabajo se presenta, a través del estudio de un caso, un modelo alternativo para el análisis de las preferencias turísticas, de un segmento de individuos, basado en el concepto de conjunto de consideración borroso

    Comment on Qian et al. 2008: La Niña and El Niño composites of atmospheric CO2 change

    Get PDF
    It is well known that interannual extremes in the rate of change of atmospheric CO2 are strongly influenced by the occurrence of El Niño-Southern Oscillation (ENSO) events. Qian et al. presented ENSO composites of atmospheric CO2 changes. We show that their composites do not reflect the atmospheric changes that are most relevant to understanding the role of ENSO on atmospheric CO2 variability. We present here composites of atmospheric CO2 change that differ markedly from those of Qian et al., and reveal previously unreported asymmetries between the effects on the global carbon system of El Niño and La Niña events. The calendar-year timing differs; La Niña changes in atmospheric CO2 typically occur primarily over September–May, while El Niño changes occur primarily over December–August. And the net concentration change is quite different; La Niña changes are about half the size of El Niño changes. These results illustrate new aspects of the ENSO/global carbon budget interaction and provide useful global-scale benchmarks for the evaluation of Earth System Model studies of the carbon system

    Intraoperative probe detecting β− decays in brain tumour radio-guided surgery

    Get PDF
    Abstract Radio-guided surgery (RGS) is a technique to intraoperatively detect tumour remnants, favouring a radical resection. Exploiting β − emitting tracers provides a higher signal to background ratio compared to the established technique with γ radiation, allowing the extension of the RGS applicability range. We developed and tested a detector based on para-terphenyl scintillator with high sensitivity to low energy electrons and almost transparent to γ s to be used as intraoperative probe for RGS with β − emitting tracer. Portable read out electronics was customised to match the surgeon needs. This probe was used for preclinical test on specific phantoms and a test on "ex vivo" specimens from patients affected by meningioma showing very promising results for the application of this new technique on brain tumours. In this paper, the prototype of the intraoperative probe and the tests are discussed; then, the results on meningioma are used to make predictions on the performance of the probe detecting residuals of a more challenging and more interesting brain tumour: the glioma

    The Megapixel EBCCD: a high-resolution imaging tube sensitive to single photons

    Get PDF
    A hybrid image-intensifier tube, suitable for extremely low-light imaging, has been tested. This device is based on an Electron-Bombarded CCD chip (EBCCD) with 1024×10241024 \times 1024 sensitive pixe ls. The tube, which has a photocathode diameter of 40 mm, is gateable and zoomable, with an image magnification varying from 0.62 to 1.3. The high gain (about 4000 collected electrons per photo electron at the operational voltage of 15 kV) and the relatively low noise (180 electrons per pixel at 10 MHz pixel-readout frequency), allows single-photoelectron signals to be separated from n oise with a signal-to-noise ratio greater than 10. By applying an appropriate threshold on the signal amplitude, the background can almost be eliminated, with a loss of few percent in single-ph otoelectron counting. High inner gain, low noise, single-photoelectron sensitivity, and high spatial resolution make the EBCCD imaging tube a unique device, attractive for many applications in h igh-energy physics, astrophysics, biomedical diagnostics

    Singular Location and Signaling Profile of Adenosine A2A-Cannabinoid CB1 Receptor Heteromers in the Dorsal Striatum

    Get PDF
    The dorsal striatum is a key node for many neurobiological processes such as motor activity, cognitive functions, and affective processes. The proper functioning of striatal neurons relies critically on metabotropic receptors. Specifically, the main adenosine and endocannabinoid receptors present in the striatum, ie, adenosine A2A receptor (A2AR) and cannabinoid CB1 receptor (CB1R), are of pivotal importance in the control of neuronal excitability. Facilitatory and inhibitory functional interactions between striatal A2AR and CB1R have been reported, and evidence supports that this cross-talk may rely, at least in part, on the formation of A2AR-CB1R heteromeric complexes. However, the specific location and properties of these heteromers have remained largely unknown. Here, by using techniques that allowed a precise visualization of the heteromers in situ in combination with sophisticated genetically-modified animal models, together with biochemical and pharmacological approaches, we provide a high resolution expression map and a detailed functional characterization of A2AR-CB1R heteromers in the dorsal striatum. Specifically, our data unveil that the A2AR-CB1R heteromer (i) is essentially absent from corticostriatal projections and striatonigral neurons, and, instead, is largely present in striatopallidal neurons, (ii) displays a striking G protein-coupled signaling profile, where co-stimulation of both receptors leads to strongly reduced downstream signaling, and (iii) undergoes an unprecedented dysfunction in Huntington’s disease, an archetypal disease that affects striatal neurons. Altogether, our findings may open a new conceptual framework to understand the role of coordinated adenosine-endocannabinoid signaling in the indirect striatal pathway, which may be relevant in motor function and neurodegenerative diseases
    corecore