508 research outputs found

    Evidence for Two Time Scales in Long SNS Junctions

    Full text link
    We use microwave excitation to elucidate the dynamics of long superconductor / normal metal / superconductor Josephson junctions. By varying the excitation frequency in the range 10 MHz - 40 GHz, we observe that the critical and retrapping currents, deduced from the dc voltage vs. dc current characteristics of the junction, are set by two different time scales. The critical current increases when the ac frequency is larger than the inverse diffusion time in the normal metal, whereas the retrapping current is strongly modified when the excitation frequency is above the electron-phonon rate in the normal metal. Therefore the critical and retrapping currents are associated with elastic and inelastic scattering, respectively

    Cap rock efficiency of geothermal systems in fold-and-thrust belts: Evidence from paleo-thermal and structural analyses in Rosario de La Frontera geothermal area (NW Argentina)

    Get PDF
    Cap rock characterization of geothermal systems is often neglected despite fracturing may reduce its efficiency and favours fluid migration. We investigated the siliciclastic cap rock of Rosario de La Frontera geothermal system (NW Argentina) in order to assess its quality as a function of fracture patterns and related thermal alteration. Paleothermal investigations (XRD on fine-grained fraction of sediments, organic matter optical analysis and fluid inclusions on veins) and 1D thermal modelling allowed us to distinguish the thermal fingerprint associated to sedimentary burial from that related to fluid migration. The geothermal system is hosted in a Neogene N-S anticline dissected by high angle NNW- and ENE-striking faults. Its cap rock can be grouped into two quality categories: • rocks acting as good insulators, deformed by NNW–SSE and E–W shear fractures, NNE-SSW gypsum- and N-S-striking calcite-filled veins that developed during the initial stage of anticline growth. Maximum paleo-temperatures (< 60 °C) were experienced during deposition to folding phases.• rocks acting as bad insulators, deformed by NNW-SSE fault planes and NNW- and WNW-striking sets of fractures associated to late transpressive kinematics. Maximum paleo-temperatures higher than about 115 °C are linked to fluid migration from the reservoir to surface (with a reservoir top at maximum depths of 2.5 km) along fault damage zones.This multi-method approach turned out to be particularly useful to trace the main pathways of hot fluids and can be applied in blind geothermal systems where either subsurface data are scarce or surface thermal anomalies are lacking.Fil: Maffucci, R.. Universita Degli Studi Della Tuscia; Italia. Universita Degli Studi Roma Tre; ItaliaFil: Corrado, Sveva. Universita Degli Studi Roma Tre; ItaliaFil: Aldega, L.. Instituto de Investigaciones Universitarias Roma la Sapienza; ItaliaFil: Bigi, S.. Instituto de Investigaciones Universitarias Roma la Sapienza; ItaliaFil: Chiodi, Agostina Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta. Instituto de Investigaciones en Energía no Convencional. Universidad Nacional de Salta. Facultad de Ciencias Exactas. Departamento de Física. Instituto de Investigaciones en Energía no Convencional; ArgentinaFil: Di Paolo, L.. Eni E&P Division; ItaliaFil: Giordano, G.. Universita Degli Studi Roma Tre; ItaliaFil: Invernizzi, C.. Universita Degli Di Camerino; Itali

    Silicon Superconducting Quantum Interference Device

    Full text link
    We have studied a Superconducting Quantum Interference SQUID device made from a single layer thin film of superconducting silicon. The superconducting layer is obtained by heavily doping a silicon wafer with boron atoms using the Gas Immersion Laser Doping (GILD) technique. The SQUID device is composed of two nano-bridges (Dayem bridges) in a loop and shows magnetic flux modulation at low temperature and low magnetic field. The overall behavior shows very good agreement with numerical simulations based on the Ginzburg-Landau equations.Comment: Published in Applied Physics Letters (August 2015

    Piercing an interface with a brush: collaborative stiffening

    Full text link
    The hairs of a painting brush withdrawn from a wetting liquid self-assemble into clumps whose sizes rely on a balance between liquid surface tension and hairs bending rigidity. Here we study the situation of an immersed carpet in an evaporating liquid bath : the free extremities of the hairs are forced to pierce the liquid interface. The compressive capillary force on the tip of flexible hairs leads to buckling and collapse. However we find that the spontaneous association of hairs into stronger bundles may allow them to resist capillary buckling. We explore in detail the different structures obtained and compare them with similar patterns observed in micro-structured surfaces such as carbon nanotubes "forests".Comment: 9 pages, 6 figure

    Proximity DC squids in the long junction limit

    Full text link
    We report the design and measurement of Superconducting/normal/superconducting (SNS) proximity DC squids in the long junction limit, i.e. superconducting loops interrupted by two normal metal wires roughly a micrometer long. Thanks to the clean interface between the metals, at low temperature a large supercurrent flows through the device. The dc squid-like geometry leads to an almost complete periodic modulation of the critical current through the device by a magnetic flux, with a flux periodicity of a flux quantum h/2e through the SNS loop. In addition, we examine the entire field dependence, notably the low and high field dependence of the maximum switching current. In contrast with the well-known Fraunhoffer-type oscillations typical of short wide junctions, we find a monotonous gaussian extinction of the critical current at high field. As shown in [15], this monotonous dependence is typical of long and narrow diffusive junctions. We also find in some cases a puzzling reentrance at low field. In contrast, the temperature dependence of the critical current is well described by the proximity effect theory, as found by Dubos {\it et al.} [16] on SNS wires in the long junction limit. The switching current distributions and hysteretic IV curves also suggest interesting dynamics of long SNS junctions with an important role played by the diffusion time across the junction.Comment: 12 pages, 16 figure

    Supra-oscillatory critical temperature dependence of Nb-Ho bilayers

    Full text link
    We investigate the critical temperature Tc of a thin s-wave superconductor (Nb) proximity coupled to a helical rare earth ferromagnet (Ho). As a function of the Ho layer thickness, we observe multiple oscillations of Tc superimposed on a slow decay, that we attribute to the influence of the Ho on the Nb proximity effect. Because of Ho inhomogeneous magnetization, singlet and triplet pair correlations are present in the bilayers. We take both into consideration when solving the self consistent Bogoliubov-de Gennes equations, and we observe a reasonable agreement. We also observe non-trivial transitions into the superconducting state, the zero resistance state being attained after two successive transitions which appear to be associated with the magnetic structure of Ho.Comment: Main article: 5 pages, 4 figures; Supplementary materials: 4 pages, 5 figure

    Geometry-related magnetic interference patterns in long SNS Josephson junctions

    Full text link
    We have measured the critical current dependence on the magnetic flux of two long SNS junctions differing by the normal wire geometry. The samples are made by a Au wire connected to W contacts, via Focused Ion Beam assisted deposition. We could tune the magnetic pattern from the monotonic gaussian-like decay of a quasi 1D normal wire to the Fraunhofer-like pattern of a square normal wire. We explain the monotonic limit with a semiclassical 1D model, and we fit both field dependences with numerical simulations of the 2D Usadel equation. Furthermore, we observe both integer and fractional Shapiro steps. The magnetic flux dependence of the integer steps reproduces as expected that of the critical current Ic, while fractional steps decay slower with the flux than Ic.Comment: 5 pages, 4 figure

    Long-lasting beneficial effects of central serotonin receptor 7 stimulation in female mice modeling Rett syndrome.

    Get PDF
    Rett syndrome (RTT) is a rare neurodevelopmental disorder, characterized by severe behavioral and physiological symptoms. Mutations in the methyl CpG binding protein 2 gene (MECP2) cause more than 95% of classic cases, and currently there is no cure for this devastating disorder. Recently we have demonstrated that specific behavioral and brain molecular alterations can be rescued in MeCP2-308 male mice, a RTT mouse model, by pharmacological stimulation of the brain serotonin receptor 7 (5-HT7R). This member of the serotonin receptor family-crucially involved in the regulation of brain structural plasticity and cognitive processes-can be stimulated by systemic repeated treatment with LP-211, a brain-penetrant selective 5-HT7R agonist. The present study extends previous findings by demonstrating that the LP-211 treatment (0.25 mg/kg, once per day for 7 days) rescues RTT-related phenotypic alterations, motor coordination (Dowel test), spatial reference memory (Barnes maze test) and synaptic plasticity (hippocampal long-term-potentiation) in MeCP2-308 heterozygous female mice, the genetic and hormonal milieu that resembles that of RTT patients. LP-211 also restores the activation of the ribosomal protein (rp) S6, the downstream target of mTOR and S6 kinase, in the hippocampus of RTT female mice. Notably, the beneficial effects on neurobehavioral and molecular parameters of a seven-day long treatment with LP-211 were evident up to 2 months after the last injection, thus suggesting long-lasting effects on RTT-related impairments. Taken together with our previous study, these results provide compelling preclinical evidence of the potential therapeutic value for RTT of a pharmacological approach targeting the brain 5-HT7R

    Online sexual activities in Italian older adults: The role of gender, sexual orientation, and permissiveness

    Get PDF
    Introduction Online sexual activities (OSAs) are sexual behaviors involving online sexual content and stimuli and are categorized into non-arousal (N-OSAs), solitary arousal (S-OSAs), and partnered arousal activities (P-OSAs). As such activities in older age remain largely underexamined, this study aimed to explore OSAs in a sample of Italian older adults, analyzing their associations with gender and sexual orientation, considering sexual permissiveness as a moderator. Methods One hundred and fourteen cisgender participants (85 men and 29 women) aged from 52 to 79 years old (M = 62.57, SD = 6.19) were recruited between September 2019 and January 2020 to participate in an online cross-sectional survey on OSAs. Results A total of 58.1% of participants had engaged in S-OSAs at least 2–3 times during the previous month, while a lower percentage of participants had engaged in N-OSAs (38.6%) and P-OSAs (29.9%) at least 2–3 times during the previous month. Men were more likely to be engaged in S-OSAs than women. Being non-heterosexual was associated with an increase in engagement in N-OSAs and S-OSAs, but not in P-OSAs. Sexual permissiveness was significantly associated with N-OSAs and S-OSAs, but not with P-OSAs, and did not moderate either the relationship of gender with OSAs or that of sexual orientation with OSAs. Conclusions This study sheds light on the need to include online resources in sexual health educational programs addressed at older people, as well as in training programs addressed at healthcare professionals and social workers working with this population
    • …
    corecore