63 research outputs found

    Metabolomics and genetics of reproductive bud development in Ficus carica var. sativa (edible fig) and in Ficus carica var. caprificus (caprifig): similarities and differences

    Get PDF
    In figs, reproductive biology comprises cultivars requiring or not pollination, with female trees (edible fig) and male trees (caprifig) bearing different types of fruits. Metabolomic and genetic studies may clarify bud differentiation mechanisms behind the different fruits. We used a targeted metabolomic analysis and genetic investigation through RNA sequence and candidate gene investigation to perform a deep analysis of buds of two fig cultivars, 'Petrelli' (San Pedro type) and 'Dottato' (Common type), and one caprifig. In this work, proton nuclear magnetic resonance (H-1 NMR-based metabolomics) has been used to analyze and compare buds of the caprifig and the two fig cultivars collected at different times of the season. Metabolomic data of buds collected on the caprifig, 'Petrelli', and 'Dottato' were treated individually, building three separate orthogonal partial least squared (OPLS) models, using the "y" variable as the sampling time to allow the identification of the correlations among metabolomic profiles of buds. The sampling times revealed different patterns between caprifig and the two edible fig cultivars. A significant amount of glucose and fructose was found in 'Petrelli', differently from 'Dottato', in the buds in June, suggesting that these sugars not only are used by the ripening brebas of 'Petrelli' but also are directed toward the developing buds on the current year shoot for either a main crop (fruit in the current season) or a breba (fruit in the successive season). Genetic characterization through the RNA-seq of buds and comparison with the literature allowed the identification of 473 downregulated genes, with 22 only in profichi, and 391 upregulated genes, with 21 only in mammoni

    Screening of ninety herbal products of commercial interest as potential ingredients for phytocosmetics

    Get PDF
    Elastase and tyrosinase are important targets both for cosmetics and for dermatological disorders. In this work, ninety herbal products were tested as inhibitors of these two enzymes. Eleven extracts resulted strongly active. Four out of them (Camellia sinensis, Ginkgo biloba, Rhodiola rosea, Vitis vinifera) inhibited both enzymes, five (Glycyrrhiza glabra, Ribes nigrum, Rheum officinale, Salvia officinalis, Tilia platyphyllos) were active against tyrosinase only, and two (Ceterach officinarum and Cinnamomum zeylanicum) proved selectively active against elastase. The IC50 ranged from 3.1 to 104.9 \u3bcg/mL and 19.3 to 164.3 \u3bcg/mL, against elastase and tyrosinase, respectively. The most active extracts resulted enriched in flavonoids (from 1.47 to 56.47 mg RE/g of extract) and phenolics (from 37.43 to 123.56 mg GAE/g of extract), indicating also an antioxidant potential. Finally, a positive correlation between enzymatic bioactivities and phenolic content was also established

    Metabolomic analysis and bioactivities of Arbutus unedo leaves harvested across the seasons in different natural habitats of Sardinia (Italy)

    Get PDF
    Background Arbutus unedo L. is a wild tree of Mediterranean regions used as food and in traditional medicine and important for afforestation programs. There is no detailed information available on the variation of A. unedo leaves metabolome across the seasons. The leaves were analyzed by Proton nuclear magnetic resonance ((1) H NMR)-based metabolomics, comparing samples harvested across the seasons and in ten different natural habitats of Sardinia (Italy).Results Multivariate analysis showed the impact of seasonal variation on the metabolome: glucose and quinic acid increased in summer, while in spring sucrose was accumulated. beta-Arbutin, the main known active principle of A. unedo, generally reached the highest concentration in autumn. In winter, O-beta-methylglucose, gamma-aminobutyric acid (GABA), flavonols (quercetin-3-O-alpha-rhamnoside, myricetin-3-O-alpha-rhamnoside, kaempferol-3-O-alpha-rhamnoside), catechin, and gallocatechin increased. Characteristic metabolomic features were found also for samples collected in different locations. For instance, trees growing at the highest altitude and exposed to lower temperatures produced less flavonols and catechins. The only sample collected on trees growing on limestones, dolomites, and dolomitic limestones type of soil showed generally the highest content of arbutin. The highest phenolics content was found during spring, while samples collected on flowering branches in winter were the ones with the highest flavonoid content. The antioxidant activity was also variated, ranging from 1.3 to 10.1 mg of Trolox equivalents (TE)/mL of extract, and it was positively correlated to both total phenolics and flavonoid content. Winter samples showed the lowest antibacterial activity, while summer and autumn ones exhibited the highest activity (IC50 values ranging from 17.3 to 42.3 mu g/mL against Staphylococcal species).Conclusion This work provides H-1 -NMR fingerprinting of A. unedo leaves, elucidating the main metabolites and their variations during seasons. On the basis of arbutin content, autumn could be considered the balsamic period of this taxon. Samples collected in this season were also the most active ones as antibacterial. Moreover, an interesting metabolomic profile enriched in catechins and flavonols was observed in leaves collected in winter on flowering branches which were endowed with high antioxidant potential

    Ontogeny and organ‐specific steroidal glycoside diversity is associated with differential expression of steroidal glycoside pathway genes in two Solanum dulcamara leaf chemotypes

    Get PDF
    : Solanaceous plants, such as Solanum dulcamara, produce steroidal glycosides (SGs). Leaf SG profiles vary among S. dulcamara individuals, leading to distinct phytochemical phenotypes ('chemotypes') and intraspecific phytochemical diversity ('chemodiversity'). However, if and how SG chemodiversity varies among organs and across ontogeny, and how this relates to SG metabolism gene expression is unknown. Among organs and across ontogeny, S. dulcamara plants with saturated (S) and unsaturated (U) SG leaf chemotypes were selected and clonally propagated. Roots, stems and leaves were harvested from vegetative and flowering plants. Extracts were analysed using untargeted LC-MS. Expression of candidate genes in SG metabolism (SdGAME9, SdGAME4, SdGAME25, SdS5αR2 and SdDPS) was analysed using RT-qPCRs. Our analyses showed that SG chemodiversity varies among organs and across ontogeny in S. dulcamara; SG richness (Dmg) was higher in flowering than vegetative plants. In vegetative plants, Dmg was higher for leaves than for roots. Lack of SdGAME25 expression in U-chemotype leaves, while readily expressed in roots and stems, suggests a pivotal role for SdGAME25 in differentiation of leaf chemotypes in vegetative and flowering plants. By acting as an ontogeny-dependent chemotypic switch, differential regulation of SdGAME25 enables adaptive allocation of SGs, thereby increasing SG chemodiversity in leaves. This indicates that differential expression and/or regulation of glycoalkaloid metabolism genes, rather than their presence or absence, explains observed chemotypic variation in SG chemodiversity among organs and across ontogeny

    Different Seasonal Collections of Ficus carica L. Leaves Diversely Modulate Lipid Metabolism and Adipogenesis in 3T3-L1 Adipocytes

    Get PDF
    Due to the high prevalence of obesity and type 2 diabetes, adipogenesis dysfunction and metabolic disorders are common features in the elderly population. Thus, the identification of novel compounds with anti-adipogenic and lipolytic effects is highly desirable to reduce diabetes complications. Plants represent an important source of bioactive compounds. To date, the antidiabetic potential of several traditional plants has been reported, among which Ficus carica L. is one of the most promising. Considering that plant metabolome changes in response to a number of factors including seasonality, the aim of this study was to evaluate whether Ficus carica leaves extracts collected in autumn (FCa) and spring (FCs) differently modulate lipid metabolism and adipogenesis in 3T3-L1 adipocytes. The H-1-NMR profile of the extracts showed that FCs have a higher content of caffeic acid derivatives, glucose, and sucrose than FCa. In contrast, FCa showed a higher concentration of malic acid and furanocoumarins, identified as psoralen and bergapten. In vitro testing showed that only FCa treatments were able to significantly decrease the lipid content (Ctrl vs. FCa 25 mu g/mL, 50 mu g/mL and 80 mu g/mL; p < 0.05, p < 0.01 and p < 0.001, respectively). Furthermore, FCa treatments were able to downregulate the transcriptional pathway of adipogenesis and insulin sensitivity in 3T3-L1 adipocytes. In more detail, FCa 80 mu g/mL significantly decreased the gene expression of PPAR gamma (p < 0.05), C/EBP alpha (p < 0.05), Leptin (p < 0.0001), adiponectin (p < 0.05) and GLUT4 (p < 0.01). In conclusion, this study further supports an in-depth investigation of F. carica leaves extracts as a promising source of active compounds useful for targeting obesity and diabetes

    Leaves and spiny burs of castanea sativa from an experimental chestnut grove: Metabolomic analysis and anti-neuroinflammatory activity

    Get PDF
    Castanea sativa cultivation has been present in Mediterranean regions since ancient times. In order to promote a circular economy, it is of great importance to valorize chestnut groves’ by-products. In this study, leaves and spiny burs from twenty-four Castanea trees were analyzed by1 H NMR metabolomics to provide an overview of their phytochemical profile. The Orthogonal Projections to Latent Structures Discriminant Analysis (OPLS-DA) performed on these data allowed us to distinguish ‘Marrone’ from ‘Castagna’, since the latter were generally more enriched with secondary metabolites, in particular, flavonoids (astragalin, isorhamnetin glucoside, and myricitrin) were dominant. Knowing that microglia are involved in mediating the oxidative and inflammatory response of the central nervous system, the potential anti-inflammatory effects of extracts derived from leaves and spiny burs were evaluated in a neuroinflammatory cell model: BV-2 microglia cells. The tested extracts showed cytoprotective activity (at 0.1 and 0.5 mg/mL) after inflammation induction by 5 µg/mL lipopolysaccharide (LPS). In addition, the transcriptional levels of IL-1β, TNF-α, and NF-kB expression induced by LPS were significantly decreased by cell incubation with spiny burs and leaves extracts. Taken together, the obtained results are promising and represent an important step to encourage recycling and valorization of chestnut byproducts, usually considered “waste”

    By-Product Extracts from Castanea sativa Counteract Hallmarks of Neuroinflammation in a Microglial Model

    Get PDF
    Castanea sativa is very common in Italy, and the large amount of waste material generated during chestnut processing has a high environmental impact. Several studies demonstrated that chestnut by-products are a good source of bioactive compounds, mainly endowed with antioxidant properties. This study further investigates the anti-neuroinflammatory effect of chestnut leaf and spiny bur extracts, together with the deepest phytochemical characterisation (by NMR and MS) of active biomolecules contained in leaf extracts, which resulted in being more effective than spiny bur ones. BV-2 microglial cells stimulated with lipopolysaccharide (LPS) were used as a model of neuroinflammation. In BV-2 cells pre-treated with chestnut extracts, LPS signalling is partially blocked via the reduced expression of TLR4 and CD14 as well as the expression of LPS-induced inflammatory markers. Leaf extract fractions revealed the presence of specific flavonoids, such as isorhamnetin glucoside, astragalin, myricitrin, kaempferol 3-rhamnosyl (1-6)(2″-trans-p-coumaroyl)hexoside, tiliroside and unsaturated fatty acids, all of which could be responsible for the observed anti-neuroinflammatory effects. Interestingly, the kaempferol derivative has been identified in chestnut for the first time. In conclusion, the exploitation of chestnut by-products is suitable for the achievement of two goals: satisfaction of consumers’ demand for new, natural bio-active compounds and valorisation of by-products

    Green extraction of Rosa canina L. and Prunus spinosa L. by NaDES and their encapsulation in chitosan nanoparticles for cosmetic industry

    Get PDF
    The cosmetic industries increasingly value innovative natural ingredients as markers of sustainability. This work investigated the preparation of extracts from rosehips and blackthorns using natural deep eutectic solvents (NaDES) and their encapsulation in chitosan nanoparticles for cosmetic applications. The phenolic composition of the extracts, obtained either using ethanolic solution or NaDES, was evaluated through phytochemical assays. Chitosan nanoparticles were prepared using various crosslinking agents and polymer concentrations, followed by characterization of their physicochemical properties. Cell viability studies were conducted on the human dermal fibroblast cell line WS1. The NaDES extracts exhibited promising results, showing a total phenolic content of 35.26±2.41 and 8.65±0.42 mg GAE/g FW and antioxidant activity by DPPH assay of 92.67±0.74 and 86.06 ±1.88 % for rosehip and blackthorn, respectively. The optimized nanoparticles formulation was achieved using pentasodium tripolyphosphate solid as the crosslinking agent and a chitosan concentration of 2 mg/mL. Nanoparticle characterization revealed that they were small in size with entrapment efficiency of 63.43±0.54 and 72.64±0.68 % for rosehips and blackthorns extract, respectively. Furthermore, the chosen formulations were stable for 8 weeks and exhibited good cell viability. In conclusion, chitosan nanoparticles loaded with NaDES extract of rosehip and blackthorn could be a novel and green antioxidant formulation for cosmetic application

    A New Wound-Healing Tool Based on Glycyrrhiza glabra Extract-Loaded Ufasomes on Spanish Broom Dressings

    Get PDF
    The development of innovative products for restoring skin integrity and promoting wound healing is still a challenge. The aim of this work was to evaluate an innovative Spanish broom wound dressing impregnated with Glycyrrhiza glabra extract-loaded ufasomes to improve wound healing. Ufasomes were characterized in terms of size, polydispersity index, entrapment efficiency, zeta potential, and stability. In addition, in vitro release studies and biocompatibility, biosafety, and scratch tests on WS1 fibroblasts were performed. The loaded ufasomes showed a nanometric size (<250 nm), good size distribution (lower than 0.3), and appropriate encapsulation efficiency (~67%). Moreover, the lipid vesicles showed good stability during the storage period and allowed for a slow release of glycyrrhizin, the main bioactive compound of the extract. Biological studies revealed that loaded vesicles are not cytotoxic, are hemocompatible, and lead to the complete closure of the scratch after about 33 h. To conclude, the results suggest that the developed dressings can be efficiently used to promote the healing process

    Design and Characterization of an Ethosomal Gel Encapsulating Rosehip Extract

    Get PDF
    : Rising environmental awareness drives green consumers to purchase sustainable cosmetics based on natural bioactive compounds. The aim of this study was to deliver Rosa canina L. extract as a botanical ingredient in an anti-aging gel using an eco-friendly approach. Rosehip extract was first characterized in terms of its antioxidant activity through a DPPH assay and ROS reduction test and then encapsulated in ethosomal vesicles with different percentages of ethanol. All formulations were characterized in terms of size, polydispersity, zeta potential, and entrapment efficiency. Release and skin penetration/permeation data were obtained through in vitro studies, and cell viability was assessed using an MTT assay on WS1 fibroblasts. Finally, ethosomes were incorporated in hyaluronic gels (1% or 2% w/v) to facilitate skin application, and rheological properties were studied. Rosehip extract (1 mg/mL) revealed a high antioxidant activity and was successfully encapsulated in ethosomes containing 30% ethanol, having small sizes (225.4 ± 7.0 nm), low polydispersity (0.26 ± 0.02), and good entrapment efficiency (93.41 ± 5.30%). This formulation incorporated in a hyaluronic gel 1% w/v showed an optimal pH for skin application (5.6 ± 0.2), good spreadability, and stability over 60 days at 4 °C. Considering sustainable ingredients and eco-friendly manufacturing technology, the ethosomal gel of rosehip extract could be an innovative and green anti-aging skincare product
    corecore