789 research outputs found
Radiative falloff in Schwarzschild-de Sitter spacetime
We consider the time evolution of a scalar field propagating in
Schwarzschild-de Sitter spacetime. At early times, the field behaves as if it
were in pure Schwarzschild spacetime; the structure of spacetime far from the
black hole has no influence on the evolution. In this early epoch, the field's
initial outburst is followed by quasi-normal oscillations, and then by an
inverse power-law decay. At intermediate times, the power-law behavior gives
way to a faster, exponential decay. At late times, the field behaves as if it
were in pure de Sitter spacetime; the structure of spacetime near the black
hole no longer influences the evolution in a significant way. In this late
epoch, the field's behavior depends on the value of the curvature-coupling
constant xi. If xi is less than a critical value 3/16, the field decays
exponentially, with a decay constant that increases with increasing xi. If xi >
3/16, the field oscillates with a frequency that increases with increasing xi;
the amplitude of the field still decays exponentially, but the decay constant
is independent of xi.Comment: 10 pages, ReVTeX, 5 figures, references updated, and new section
adde
Selective scattering between Floquet-Bloch and Volkov states in a topological insulator
The coherent optical manipulation of solids is emerging as a promising way to
engineer novel quantum states of matter. The strong time periodic potential of
intense laser light can be used to generate hybrid photon-electron states.
Interaction of light with Bloch states leads to Floquet-Bloch states which are
essential in realizing new photo-induced quantum phases. Similarly, dressing of
free electron states near the surface of a solid generates Volkov states which
are used to study non-linear optics in atoms and semiconductors. The
interaction of these two dynamic states with each other remains an open
experimental problem. Here we use Time and Angle Resolved Photoemission
Spectroscopy (Tr-ARPES) to selectively study the transition between these two
states on the surface of the topological insulator Bi2Se3. We find that the
coupling between the two strongly depends on the electron momentum, providing a
route to enhance or inhibit it. Moreover, by controlling the light polarization
we can negate Volkov states in order to generate pure Floquet-Bloch states.
This work establishes a systematic path for the coherent manipulation of solids
via light-matter interaction.Comment: 21 pages, 6 figures, final version to appear in Nature Physic
Incidence of Pneumocystis pneumonia in immunocompromised patients without human immunodeficiency virus on intravenous pentamidine prophylaxis: A systematic review and meta-analysis
BACKGROUND: Trimethoprim-sulfamethoxazole (TMP-SMX) is a first-line
METHOD: We performed a systematic review and meta-analysis to estimate breakthrough PCP incidence and adverse reactions in HIV-uninfected immunocompromised patients receiving IVP. MEDLINE, Embase, Web of Science, Cochrane Library, and ClinicalTrials.gov were searched from their inception until 15 December 2022.
RESULTS: The pooled incidence of breakthrough PCP with IVP was 0.7% (95% CI, 0.3-1.4%, 16 studies, 3025 patients) and was similar when used as first-line prophylaxis (0.5%; 95% CI, 0.2-1.4%, 7 studies, 752 patients). The pooled incidence of adverse reactions was 11.3% (95% CI, 6.7-18.6%, 14 studies, 2068 patients). The pooled adverse event-related discontinuation was 3.7% (95% CI, 1.8-7.3%, 11 studies, 1802 patients), but was lower in patients receiving IVP monthly (2.0%; 95% CI 0.7-5.7%, 7 studies, 1182 patients).
CONCLUSION: Monthly IVP is an appropriate second-line agent for PCP prophylaxis in certain non-HIV immunocompromised hosts, especially in patients with hematologic malignancies and hematopoietic stem cell transplant recipients. Using IVP for PCP prophylaxis as an alternative to oral TMP-SMX while patients are unable to tolerate enteral medication administration is feasible
Origin and evolution of the octoploid strawberry genome.
Cultivated strawberry emerged from the hybridization of two wild octoploid species, both descendants from the merger of four diploid progenitor species into a single nucleus more than 1 million years ago. Here we report a near-complete chromosome-scale assembly for cultivated octoploid strawberry (Fragaria × ananassa) and uncovered the origin and evolutionary processes that shaped this complex allopolyploid. We identified the extant relatives of each diploid progenitor species and provide support for the North American origin of octoploid strawberry. We examined the dynamics among the four subgenomes in octoploid strawberry and uncovered the presence of a single dominant subgenome with significantly greater gene content, gene expression abundance, and biased exchanges between homoeologous chromosomes, as compared with the other subgenomes. Pathway analysis showed that certain metabolomic and disease-resistance traits are largely controlled by the dominant subgenome. These findings and the reference genome should serve as a powerful platform for future evolutionary studies and enable molecular breeding in strawberry
Single-molecule sequencing and optical mapping yields an improved genome of woodland strawberry (Fragaria vesca) with chromosome-scale contiguity
Background: Although draft genomes are available for most agronomically important plant species, the majority are incomplete, highly fragmented, and often riddled with assembly and scaffolding errors. These assembly issues hinder advances in tool development for functional genomics and systems biology. Findings: Here we utilized a robust, cost-effective approach to produce high-quality reference genomes. We report a near-complete genome of diploid woodland strawberry (Fragaria vesca) using single-molecule real-time sequencing from Pacific Biosciences (PacBio). This assembly has a contig N50 length of similar to 7.9 million base pairs (Mb), representing a similar to 300-fold improvement of the previous version. The vast majority (>99.8%) of the assembly was anchored to 7 pseudomolecules using 2 sets of optical maps from Bionano Genomics. We obtained similar to 24.96 Mb of sequence not present in the previous version of the F. vesca genome and produced an improved annotation that includes 1496 new genes. Comparative syntenic analyses uncovered numerous, large-scale scaffolding errors present in each chromosome in the previously published version of the F. vesca genome. Conclusions: Our results highlight the need to improve existing short-read based reference genomes. Furthermore, we demonstrate how genome quality impacts commonly used analyses for addressing both fundamental and applied biological questions.Peer reviewe
Granulosa Cell Endothelin-2 Expression is Fundamental for Ovulatory Follicle Rupture
Ovulation is dependent upon numerous factors mediating follicular growth, vascularization, and ultimately oocyte release via follicle rupture. Endothelin-2 (EDN2) is a potent vasoconstrictor that is transiently produced prior to follicle rupture by granulosa cells of periovulatory follicles and induces ovarian contraction. To determine the role of Edn2 expression, surgical transplant and novel conditional knockout mice were super-ovulated and analyzed. Conditional knockout mice utilized a new iCre driven by the Esr2 promoter to selectively remove Edn2. Follicle rupture and fertility were significantly impaired in the absence of ovarian Edn2 expression. When ovaries of Edn2KO mice were transplanted in wild type recipients, significantly more corpora lutea containing un-ovulated oocytes were present after hormonal stimulation (1.0 vs. 5.4, p = 0.010). Following selective ablation of Edn2 in granulosa cells, Esr2-Edn2KO dams had reduced oocytes ovulated (3.8 vs. 16.4 oocytes/ovary) and smaller litters (4.29 ± l.02 vs. 8.50 pups/dam). However, the number of pregnancies per pairing was not different and the reproductive axis remained intact. Esr2-Edn2KO ovaries had a higher percentage of antral follicles and fewer corpora lutea; follicles progressed to the antral stage but many were unable to rupture. Conditional loss of endothelin receptor A in granulosa cells also decreased ovulation but did not affect fecundity. These data demonstrate that EDN2-induced intraovarian contraction is a critical trigger of normal ovulation and subsequent fecundity
Efficient cleaning of a macro-structured micro-rough dental implant shoulder with a new coronal vertical groove design: A technical note
This evaluation assessed the influence of a new implant shoulder design on cleanability using a now established in-vitro study model. Eight test (Botticelli, Di Meliora AG, Basel, Switzerland) and eight control implants (T3 Osseotite, ZimVie, Winterthur, Switzerland), were embedded in standardized defects in simulated bone. The implant surfaces were painted to be visually distinguishable and debrided with ultrasonic instruments (US) and an air powder waterjet device (AIR). Uncleaned implants served as positive controls. After the standardized cleaning, the implants were photographed and divided into three zones (upper marginal shoulder zone (A); lower marginal shoulder zone (B); fully threaded sub-shoulder zone (C)), and analyzed with an image processing software. On test implants, AIR was almost 100% efficacious compared to 80-90% with US, in both upper zones (A/B). In control implants, results of both AIR and US were almost 100% in zone A, but only 55-75% in zone B. In both implants, AIR showed statistically significant higher efficacy than US (P<0.05). Within the limitations of the present in-vitro model, a new macro-structured micro-rough dental implant shoulder with a new coronal vertical groove design shows similar cleanability in comparison to a smooth and machined surface
Assessing the Impact of Various Decontamination Instruments on Titanium and Zirconia Dental Implants: An In Vitro Study
This study investigates the impact of various instrumentation techniques on material removal and surface changes in titanium (Ti)- and zirconia (Zr) implant discs. Ti- and Zr discs were subjected to standardized experiments using various instruments including airflow, ultrasound, carbide, and diamond burs. Instrumentation was performed for 60 s with continuous automatic motion. Abrasion and changes in surface roughness were assessed using profilometry, while scanning electron microscopy was used to examine morphological changes and particle size. Carbide burs predominantly caused abrasion on Ti discs, while diamond burs caused more abrasion on Zr discs. The Ti discs were more susceptible to surface changes. However, among the materials tested, machined Zr discs treated with diamond burs produced the largest particle. In certain cases, a statistical significance (p 0.05). These results highlighted the statistical significance of our findings. These results found diverse alterations in surface characteristics of Ti- and Zr discs due to different instruments, with carbide and diamond burs causing notable effects. The findings highlight the need for a careful balance between promoting healing and minimizing harm during implantoplasty
PORCN moonlights in a wnt-independent pathway that regulates cancer cell proliferation
10.1371/journal.pone.0034532PLoS ONE74
- …
