7,357 research outputs found
Structure of super-families
At present the study of nuclear interactions induced by cosmic rays is the unique source of information on the nuclear interactions in the energy region above 10 to the 15th power eV. The phenomena in this energy region are observed by air shower arrays or emulsion chambers installed at high mountain. An emulsion chamber is the pile of lead plates and photo-sensitive layers (nuclear emulsion plates and/or X-ray films) used to detect electron showers. High spatial resolution of photographic material used in the emulsion chamber enables the observation of the phenomena in detail, and recent experiments of emulsion chamber with large area are being carried out at high mountain altitudes by several groups in the world
Extremely high energy hadron and gamma-ray families(3). Core structure of the halo of superfamily
The study of the core structure seen in the halo of Mini-Andromeda 3(M.A.3), which was observed in the Chacaltaya emulsion chamber, is presented. On the assumption that lateral distribution of darkness of the core is exponential type, i.e., D=D0exp(-R/r0), subtraction of D from halo darkness is performed until the cores are gone. The same quantity on cores obtained by this way are summarized. The analysis is preliminary and is going to be developed
Recovering pyramid WS gain in non-common path aberration correction mode via deformable lens
It is by now well known that pyramid based wavefront sensors, once in closed
loop, have the capability to improve more and more the gain as the reference
natural star image size is getting smaller on the pyramid pin. Especially in
extreme adaptive optics applications, in order to correct the non-common path
aberrations between the scientific and sensing channel, it is common use to
inject a certain amount of offset wavefront deformation into the DM(s),
departing at the same time the pyramid from the optimal working condition. In
this paper we elaborate on the possibility to correct the low order non-common
path aberrations at the pyramid wavefront sensor level by means of an adaptive
refractive lens placed on the optical path before the pyramid itself, allowing
the mitigation of the gain loss
The multiform motor cortical output: kinematic, predictive and response coding
Observing actions performed by others entails a subliminal activation of primary motor cortex reflecting the components encoded in the observed action. One of the most debated issues concerns the role of this output: Is it a mere replica of the incoming flow of information (kinematic coding), is it oriented to anticipate the forthcoming events (predictive coding) or is it aimed at responding in a suitable fashion to the actions of others (response coding)? The aim of the present study was to disentangle the relative contribution of these three levels and unify them into an integrated view of cortical motor coding. We combined transcranial magnetic stimulation (TMS) and electromyography recordings at different timings to probe the excitability of corticospinal projections to upper and lower limb muscles of participants observing a soccer player performing: (i) a penalty kick straight in their direction and then coming to a full stop, (ii) a penalty kick straight in their direction and then continuing to run, (iii) a penalty kick to the side and then continuing to run. The results show a modulation of the observer's corticospinal excitability in different effectors at different times reflecting a multiplicity of motor coding. The internal replica of the observed action, the predictive activation, and the adaptive integration of congruent and non-congruent responses to the actions of others can coexist in a not mutually exclusive way. Such a view offers reconciliation among different (and apparently divergent) frameworks in action observation literature, and will promote a more complete and integrated understanding of recent findings on motor simulation, motor resonance and automatic imitation
Simulating the formation and evolution of galaxies with EvoL, the Padova N-body Tree-SPH Code
The importance of numerical simulations in astrophysics is constantly growing, because of the complexity, the multi-scaling properties and the non-linearity of many physical phenomena. In particular, cosmological and galaxysized
simulations of structure formation have cast light on different aspects, giving answers to many questions, but raising a number of new issues to be investigated. Over the last decade, great effort has been devoted in Padova to develop a tool explicitly designed to study the problem of galaxy formation and evolution, with particular attention to the early-type ones. To this aim, many simulations have
been run on CINECA supercomputers (see publications list below). The next step is the new release of EvoL, a Fortran N-body code capable to follow in great detail many different aspects of stellar, interstellar and cosmological physics. In particular, special care has been paid to the properties of stars and their interplay with the surrounding interstellar medium (ISM), as well as to the multiphase nature of the ISM, to the setting of the initial and boundary conditions, and to the correct description of gas physics via modern formulations of the classical Smoothed Particle Hydrodynamics algorithms. Moreover, a powerful tool to compare numerical predictions with observables has been developed, self-consistently closing the Whole package. A library of new simulations, run with EvoL on CINECA supercomputers, is to be built in the next years, while new physics, including magnetic properties of
matter and more exotic energy feedback effects, is to be added
Non-compliance with colonoscopy after a positive faecal immunochemical test doubles the risk of dying from colorectal cancer.
The risk of colorectal cancer (CRC) among subjects with a positive faecal immunochemical test (FIT) who do not undergo a colonoscopy is unknown. We estimated whether non-compliance with colonoscopy after a positive FIT is associated with increased CRC incidence and mortality.
The FIT-based CRC screening programme in the Veneto region (Italy) invited persons aged 50 to 69 years with a positive FIT (>20 µg Hb/g faeces) for diagnostic colonoscopy at an endoscopic referral centre. In this retrospective cohort study, we compared the 10-year cumulative CRC incidence and mortality among FIT positives who completed a diagnostic colonoscopy within the programme (compliers) and those who did not (non-compliers), using the Kaplan-Meier estimator and Cox-Aalen models.
Some 88 013 patients who were FIT positive complied with colonoscopy (males: 56.1%; aged 50-59 years: 49.1%) while 23 410 did not (males: 54.6%; aged 50-59 years: 44.9%).The 10-year cumulative incidence of CRC was 44.7 per 1000 (95% CI, 43.1 to 46.3) among colonoscopy compliers and 54.3 per 1000 (95% CI, 49.9 to 58.7) in non-compliers, while the cumulative mortality for CRC was 6.8 per 1000 (95% CI, 5.9 to 7.6) and 16.0 per 1000 (95% CI, 13.1 to 18.9), respectively. The risk of dying of CRC among non-compliers was 103% higher than among compliers (adjusted HR, 2.03; 95% CI, 1.68 to 2.44).
The excess risk of CRC death among those not completing colonoscopy after a positive faecal occult blood test should prompt screening programmes to adopt effective interventions to increase compliance in this high-risk population
Plastic Representation of the Reachable Space for a Humanoid Robot
Reaching a target object requires accurate estimation of the object spatial position and its further transformation into a suitable arm-motor command. In this paper, we propose a framework that provides a robot with a capacity to represent its reachable space in an adaptive way. The location of the target is represented implicitly by both the gaze direction and the angles of arm joints. Two paired neural networks are used to compute the direct and inverse transformations between the arm position and the head position. These networks allow reaching the target either through a ballistic movement or through visually-guided actions. Thanks to the latter skill, the robot can adapt its sensorimotor transformations so as to reflect changes in its body configuration. The proposed framework was implemented on the NAO humanoid robot, and our experimental results provide evidences for its adaptative capabilities
Nonextensive statistical effects in the hadron to quark-gluon phase transition
We investigate the relativistic equation of state of hadronic matter and
quark-gluon plasma at finite temperature and baryon density in the framework of
the nonextensive statistical mechanics, characterized by power-law quantum
distributions. We study the phase transition from hadronic matter to
quark-gluon plasma by requiring the Gibbs conditions on the global conservation
of baryon number and electric charge fraction. We show that nonextensive
statistical effects play a crucial role in the equation of state and in the
formation of mixed phase also for small deviations from the standard
Boltzmann-Gibbs statistics.Comment: 13 pages, 10 figure
- …