393 research outputs found

    Density functional calculations for 4He droplets

    Full text link
    A novel density functional, which accounts correctly for the equation of state, the static response function and the phonon-roton dispersion in bulk liquid helium, is used to predict static and dynamic properties of helium droplets. The static density profile is found to exhibit significant oscillations, which are accompanied by deviations of the evaporation energy from a liquid drop behaviour in the case of small droplets. The connection between such oscillations and the structure of the static response function in the liquid is explicitly discussed. The energy and the wave function of excited states are then calculated in the framework of time dependent density functional theory. The new functional, which contains backflow-like effects, is expected to yield quantitatively correct predictions for the excitation spectrum also in the roton wave-length range.Comment: 15 pages, REVTEX, 10 figures available upon request or at http://anubis.science.unitn.it/~dalfovo/papers/papers.htm

    Thermodynamics of Dipolar Chain Systems

    Full text link
    The thermodynamics of a quantum system of layers containing perpendicularly oriented dipolar molecules is studied within an oscillator approximation for both bosonic and fermionic species. The system is assumed to be built from chains with one molecule in each layer. We consider the effects of the intralayer repulsion and quantum statistical requirements in systems with more than one chain. Specifically, we consider the case of two chains and solve the problem analytically within the harmonic Hamiltonian approach which is accurate for large dipole moments. The case of three chains is calculated numerically. Our findings indicate that thermodynamic observables, such as the heat capacity, can be used to probe the signatures of the intralayer interaction between chains. This should be relevant for near future experiments on polar molecules with strong dipole moments.Comment: 15 pages, 5 figures, final versio

    Strange Stars with a Density-Dependent Bag Parameter

    Full text link
    We have studied strange quark stars in the framework of the MIT bag model, allowing the bag parameter B to depend on the density of the medium. We have also studied the effect of Cooper pairing among quarks, on the stellar structure. Comparison of these two effects shows that the former is generally more significant. We studied the resulting equation of state of the quark matter, stellar mass-radius relation, mass-central-density relation, radius-central-density relation, and the variation of the density as a function of the distance from the centre of the star. We found that the density-dependent B allows stars with larger masses and radii, due to stiffening of the equation of state. Interestingly, certain stellar configurations are found to be possible only if B depends on the density. We have also studied the effect of variation of the superconducting gap parameter on our results.Comment: 23 pages, 8 figs; v2: 25 pages, 9 figs, version to be published in Phys. Rev. (D

    Effects of columnar disorder on flux-lattice melting in high-temperature superconductors

    Full text link
    The effect of columnar pins on the flux-lines melting transition in high-temperature superconductors is studied using Path Integral Monte Carlo simulations. We highlight the similarities and differences in the effects of columnar disorder on the melting transition in YBa2_2Cu3_3O7δ_{7-\delta} (YBCO) and the highly anisotropic Bi2_2Sr2_2CaCu2_2O8+δ_{8+\delta} (BSCCO) at magnetic fields such that the mean separation between flux-lines is smaller than the penetration length. For pure systems, a first order transition from a flux-line solid to a liquid phase is seen as the temperature is increased. When adding columnar defects to the system, the transition temperature is not affected in both materials as long as the strength of an individual columnar defect (expressed as a flux-line defect interaction) is less than a certain threshold for a given density of randomly distributed columnar pins. This threshold strength is lower for YBCO than for BSCCO. For higher strengths the transition line is shifted for both materials towards higher temperatures, and the sharp jump in energy, characteristic of a first order transition, gives way to a smoother and gradual rise of the energy, characteristic of a second order transition. Also, when columnar defects are present, the vortex solid phase is replaced by a pinned Bose glass phase and this is manifested by a marked decrease in translational order and orientational order as measured by the appropriate structure factors. For BSCCO, we report an unusual rise of the translational order and the hexatic order just before the melting transition. No such rise is observed in YBCO.Comment: 32 pages, 13 figures, revte

    Structural and dynamical properties of superfluid helium: a density functional approach

    Full text link
    We present a novel density functional for liquid 4He, properly accounting for the static response function and the phonon-roton dispersion in the uniform liquid. The functional is used to study both structural and dynamical properties of superfluid helium in various geometries. The equilibrium properties of the free surface, droplets and films at zero temperature are calculated. Our predictions agree closely to the results of ab initio Monte Carlo calculations, when available. The introduction of a phenomenological velocity dependent interaction, which accounts for backflow effects, is discussed. The spectrum of the elementary excitations of the free surface and films is studied.Comment: 37 pages, REVTeX 3.0, figures on request at [email protected]

    Persistent currents in a Bose-Einstein condensate in the presence of disorder

    Full text link
    We examine bosonic atoms that are confined in a toroidal, quasi-one-dimensional trap, subjected to a random potential. The resulting inhomogeneous atomic density is smoothened for sufficiently strong, repulsive interatomic interactions. Statistical analysis of our simulations show that the gas supports persistent currents, which become more fragile due to the disorder.Comment: 5 pages, RevTex, 3 figures, revised version, to appear in JLT

    Split-merge cycle, fragmented collapse, and vortex disintegration in rotating Bose-Einstein condensates with attractive interactions

    Full text link
    The dynamical instabilities and ensuing dynamics of singly- and doubly-quantized vortex states of Bose-Einstein condensates with attractive interactions are investigated using full 3D numerical simulations of the Gross-Pitaevskii equation. With increasing the strength of attractive interactions, a series of dynamical instabilities such as quadrupole, dipole, octupole, and monopole instabilities emerge. The most prominent instability depends on the strength of interactions, the geometry of the trapping potential, and deviations from the axisymmetry due to external perturbations. Singly-quantized vortices split into two clusters and subsequently undergo split-merge cycles in a pancake-shaped trap, whereas the split fragments immediately collapse in a spherical trap. Doubly-quantized vortices are always unstable to disintegration of the vortex core. If we suddenly change the strength of interaction to within a certain range, the vortex splits into three clusters, and one of the clusters collapses after a few split-merge cycles. The vortex split can be observed using a current experimental setup of the MIT group.Comment: 11 pages, 10 figure

    N-body simulations of gravitational dynamics

    Full text link
    We describe the astrophysical and numerical basis of N-body simulations, both of collisional stellar systems (dense star clusters and galactic centres) and collisionless stellar dynamics (galaxies and large-scale structure). We explain and discuss the state-of-the-art algorithms used for these quite different regimes, attempt to give a fair critique, and point out possible directions of future improvement and development. We briefly touch upon the history of N-body simulations and their most important results.Comment: invited review (28 pages), to appear in European Physics Journal Plu

    Detector Description and Performance for the First Coincidence Observations between LIGO and GEO

    Get PDF
    For 17 days in August and September 2002, the LIGO and GEO interferometer gravitational wave detectors were operated in coincidence to produce their first data for scientific analysis. Although the detectors were still far from their design sensitivity levels, the data can be used to place better upper limits on the flux of gravitational waves incident on the earth than previous direct measurements. This paper describes the instruments and the data in some detail, as a companion to analysis papers based on the first data.Comment: 41 pages, 9 figures 17 Sept 03: author list amended, minor editorial change

    Neutron star properties in the quark-meson coupling model

    Get PDF
    The effects of internal quark structure of baryons on the composition and structure of neutron star matter with hyperons are investigated in the quark-meson coupling (QMC) model. The QMC model is based on mean-field description of nonoverlapping spherical bags bound by self-consistent exchange of scalar and vector mesons. The predictions of this model are compared with quantum hadrodynamic (QHD) model calibrated to reproduce identical nuclear matter saturation properties. By employing a density dependent bag constant through direct coupling to the scalar field, the QMC model is found to exhibit identical properties as QHD near saturation density. Furthermore, this modified QMC model provides well-behaved and continuous solutions at high densities relevant to the core of neutron stars. Two additional strange mesons are introduced which couple only to the strange quark in the QMC model and to the hyperons in the QHD model. The constitution and structure of stars with hyperons in the QMC and QHD models reveal interesting differences. This suggests the importance of quark structure effects in the baryons at high densities.Comment: 28 pages, 10 figures, to appear in Physical Review
    corecore