393 research outputs found
Density functional calculations for 4He droplets
A novel density functional, which accounts correctly for the equation of
state, the static response function and the phonon-roton dispersion in bulk
liquid helium, is used to predict static and dynamic properties of helium
droplets. The static density profile is found to exhibit significant
oscillations, which are accompanied by deviations of the evaporation energy
from a liquid drop behaviour in the case of small droplets. The connection
between such oscillations and the structure of the static response function in
the liquid is explicitly discussed. The energy and the wave function of excited
states are then calculated in the framework of time dependent density
functional theory. The new functional, which contains backflow-like effects, is
expected to yield quantitatively correct predictions for the excitation
spectrum also in the roton wave-length range.Comment: 15 pages, REVTEX, 10 figures available upon request or at
http://anubis.science.unitn.it/~dalfovo/papers/papers.htm
Thermodynamics of Dipolar Chain Systems
The thermodynamics of a quantum system of layers containing perpendicularly
oriented dipolar molecules is studied within an oscillator approximation for
both bosonic and fermionic species. The system is assumed to be built from
chains with one molecule in each layer. We consider the effects of the
intralayer repulsion and quantum statistical requirements in systems with more
than one chain. Specifically, we consider the case of two chains and solve the
problem analytically within the harmonic Hamiltonian approach which is accurate
for large dipole moments. The case of three chains is calculated numerically.
Our findings indicate that thermodynamic observables, such as the heat
capacity, can be used to probe the signatures of the intralayer interaction
between chains. This should be relevant for near future experiments on polar
molecules with strong dipole moments.Comment: 15 pages, 5 figures, final versio
Strange Stars with a Density-Dependent Bag Parameter
We have studied strange quark stars in the framework of the MIT bag model,
allowing the bag parameter B to depend on the density of the medium. We have
also studied the effect of Cooper pairing among quarks, on the stellar
structure. Comparison of these two effects shows that the former is generally
more significant. We studied the resulting equation of state of the quark
matter, stellar mass-radius relation, mass-central-density relation,
radius-central-density relation, and the variation of the density as a function
of the distance from the centre of the star. We found that the
density-dependent B allows stars with larger masses and radii, due to
stiffening of the equation of state. Interestingly, certain stellar
configurations are found to be possible only if B depends on the density. We
have also studied the effect of variation of the superconducting gap parameter
on our results.Comment: 23 pages, 8 figs; v2: 25 pages, 9 figs, version to be published in
Phys. Rev. (D
Effects of columnar disorder on flux-lattice melting in high-temperature superconductors
The effect of columnar pins on the flux-lines melting transition in
high-temperature superconductors is studied using Path Integral Monte Carlo
simulations. We highlight the similarities and differences in the effects of
columnar disorder on the melting transition in YBaCuO
(YBCO) and the highly anisotropic BiSrCaCuO (BSCCO) at
magnetic fields such that the mean separation between flux-lines is smaller
than the penetration length. For pure systems, a first order transition from a
flux-line solid to a liquid phase is seen as the temperature is increased. When
adding columnar defects to the system, the transition temperature is not
affected in both materials as long as the strength of an individual columnar
defect (expressed as a flux-line defect interaction) is less than a certain
threshold for a given density of randomly distributed columnar pins. This
threshold strength is lower for YBCO than for BSCCO. For higher strengths the
transition line is shifted for both materials towards higher temperatures, and
the sharp jump in energy, characteristic of a first order transition, gives way
to a smoother and gradual rise of the energy, characteristic of a second order
transition. Also, when columnar defects are present, the vortex solid phase is
replaced by a pinned Bose glass phase and this is manifested by a marked
decrease in translational order and orientational order as measured by the
appropriate structure factors. For BSCCO, we report an unusual rise of the
translational order and the hexatic order just before the melting transition.
No such rise is observed in YBCO.Comment: 32 pages, 13 figures, revte
Structural and dynamical properties of superfluid helium: a density functional approach
We present a novel density functional for liquid 4He, properly accounting for
the static response function and the phonon-roton dispersion in the uniform
liquid. The functional is used to study both structural and dynamical
properties of superfluid helium in various geometries. The equilibrium
properties of the free surface, droplets and films at zero temperature are
calculated. Our predictions agree closely to the results of ab initio Monte
Carlo calculations, when available. The introduction of a phenomenological
velocity dependent interaction, which accounts for backflow effects, is
discussed. The spectrum of the elementary excitations of the free surface and
films is studied.Comment: 37 pages, REVTeX 3.0, figures on request at [email protected]
Persistent currents in a Bose-Einstein condensate in the presence of disorder
We examine bosonic atoms that are confined in a toroidal,
quasi-one-dimensional trap, subjected to a random potential. The resulting
inhomogeneous atomic density is smoothened for sufficiently strong, repulsive
interatomic interactions. Statistical analysis of our simulations show that the
gas supports persistent currents, which become more fragile due to the
disorder.Comment: 5 pages, RevTex, 3 figures, revised version, to appear in JLT
Split-merge cycle, fragmented collapse, and vortex disintegration in rotating Bose-Einstein condensates with attractive interactions
The dynamical instabilities and ensuing dynamics of singly- and
doubly-quantized vortex states of Bose-Einstein condensates with attractive
interactions are investigated using full 3D numerical simulations of the
Gross-Pitaevskii equation. With increasing the strength of attractive
interactions, a series of dynamical instabilities such as quadrupole, dipole,
octupole, and monopole instabilities emerge. The most prominent instability
depends on the strength of interactions, the geometry of the trapping
potential, and deviations from the axisymmetry due to external perturbations.
Singly-quantized vortices split into two clusters and subsequently undergo
split-merge cycles in a pancake-shaped trap, whereas the split fragments
immediately collapse in a spherical trap. Doubly-quantized vortices are always
unstable to disintegration of the vortex core. If we suddenly change the
strength of interaction to within a certain range, the vortex splits into three
clusters, and one of the clusters collapses after a few split-merge cycles. The
vortex split can be observed using a current experimental setup of the MIT
group.Comment: 11 pages, 10 figure
N-body simulations of gravitational dynamics
We describe the astrophysical and numerical basis of N-body simulations, both
of collisional stellar systems (dense star clusters and galactic centres) and
collisionless stellar dynamics (galaxies and large-scale structure). We explain
and discuss the state-of-the-art algorithms used for these quite different
regimes, attempt to give a fair critique, and point out possible directions of
future improvement and development. We briefly touch upon the history of N-body
simulations and their most important results.Comment: invited review (28 pages), to appear in European Physics Journal Plu
Detector Description and Performance for the First Coincidence Observations between LIGO and GEO
For 17 days in August and September 2002, the LIGO and GEO interferometer
gravitational wave detectors were operated in coincidence to produce their
first data for scientific analysis. Although the detectors were still far from
their design sensitivity levels, the data can be used to place better upper
limits on the flux of gravitational waves incident on the earth than previous
direct measurements. This paper describes the instruments and the data in some
detail, as a companion to analysis papers based on the first data.Comment: 41 pages, 9 figures 17 Sept 03: author list amended, minor editorial
change
Neutron star properties in the quark-meson coupling model
The effects of internal quark structure of baryons on the composition and
structure of neutron star matter with hyperons are investigated in the
quark-meson coupling (QMC) model. The QMC model is based on mean-field
description of nonoverlapping spherical bags bound by self-consistent exchange
of scalar and vector mesons. The predictions of this model are compared with
quantum hadrodynamic (QHD) model calibrated to reproduce identical nuclear
matter saturation properties. By employing a density dependent bag constant
through direct coupling to the scalar field, the QMC model is found to exhibit
identical properties as QHD near saturation density. Furthermore, this modified
QMC model provides well-behaved and continuous solutions at high densities
relevant to the core of neutron stars. Two additional strange mesons are
introduced which couple only to the strange quark in the QMC model and to the
hyperons in the QHD model. The constitution and structure of stars with
hyperons in the QMC and QHD models reveal interesting differences. This
suggests the importance of quark structure effects in the baryons at high
densities.Comment: 28 pages, 10 figures, to appear in Physical Review
- …
