571 research outputs found

    Tool for the Integrated Dynamic Numerical Propulsion System Simulation (NPSS)/Turbine Engine Closed-Loop Transient Analysis (TTECTrA) User's Guide

    Get PDF
    The Tool for Turbine Engine Closed-Loop Transient Analysis (TTECTrA ver2) is a control design tool thatenables preliminary estimation of transient performance for models without requiring a full nonlinear controller to bedesigned. The program is compatible with subsonic engine models implemented in the MATLAB/Simulink (TheMathworks, Inc.) environment and Numerical Propulsion System Simulation (NPSS) framework. At a specified flightcondition, TTECTrA will design a closed-loop controller meeting user-defined requirements in a semi or fully automatedfashion. Multiple specifications may be provided, in which case TTECTrA will design one controller for each, producing acollection of controllers in a single run. Each resulting controller contains a setpoint map, a schedule of setpointcontroller gains, and limiters; all contributing to transient characteristics. The goal of the program is to providesteady-state engine designers with more immediate feedback on the transient engine performance earlier in the design cycle

    An Introduction to Transient Engine Applications Using the Numerical Propulsion System Simulation (NPSS) and MATLAB

    Get PDF
    This document outlines methodologies designed to improve the interface between the Numerical Propulsion System Simulation framework and various control and dynamic analyses developed in the Matlab and Simulink environment. Although NPSS is most commonly used for steady-state modeling, this paper is intended to supplement the relatively sparse documentation on it's transient analysis functionality. Matlab has become an extremely popular engineering environment, and better methodologies are necessary to develop tools that leverage the benefits of these disparate frameworks. Transient analysis is not a new feature of the Numerical Propulsion System Simulation (NPSS), but transient considerations are becoming more pertinent as multidisciplinary trade-offs begin to play a larger role in advanced engine designs. This paper serves to supplement the relatively sparse documentation on transient modeling and cover the budding convergence between NPSS and Matlab based modeling toolsets. The following sections explore various design patterns to rapidly develop transient models. Each approach starts with a base model built with NPSS, and assumes the reader already has a basic understanding of how to construct a steady-state model. The second half of the paper focuses on further enhancements required to subsequently interface NPSS with Matlab codes. The first method being the simplest and most straightforward but performance constrained, and the last being the most abstract. These methods aren't mutually exclusive and the specific implementation details could vary greatly based on the designer's discretion. Basic recommendations are provided to organize model logic in a format most easily amenable to integration with existing Matlab control toolsets

    Open-Source Conceptual Sizing Models for the Hyperloop Passenger Pod

    Get PDF
    Hyperloop is a new mode of transportation proposed as an alternative to California's high speed rail project, with the intended benefits of higher performance at lower overall costs. It consists of a passenger pod traveling through a tube under a light vacuum and suspended on air bearings. The pod travels up to transonic speeds resulting in a 35 minute travel time between the intended route from Los Angeles and San Francisco. Of the two variants outlined, the smaller system includes a 1.1 meter tall passenger capsule traveling through a 2.2 meter tube at 700 miles per hour. The passenger pod features water-based heat exchangers as well as an on-board compression system that reduces the aerodynamic drag as it moves through the tube. Although the original proposal looks very promising, it assumes that tube and pod dimensions are independently sizable without fully acknowledging the constraints of the compressor system on the pod geometry. This work focuses on the aerodynamic and thermodynamic interactions between the two largest systems; the tube and the pod. Using open-source toolsets, a new sizing method is developed based on one-dimensional thermodynamic relationships that accounts for the strong interactions between these sub-systems. These additional considerations require a tube nearly twice the size originally considered and limit the maximum pod travel speed to about 620 miles per hour. Although the results indicate that Hyperloop will need to be larger and slightly slower than originally intended, the estimated travel time only increases by approximately five minutes, so the overall performance is not dramatically affected. In addition, the proposed on-board heat exchanger is not an ideal solution to achieve reasonable equilibrium air temperatures within the tube. Removal of this subsystem represents a potential reduction in weight, energy requirements and complexity of the pod. In light of these finding, the core concept still remains a compelling possibility, although additional engineering and economic analyses are markedly necessary before a more complete design can be developed

    Transient Thermal Analyses of Passive Systems on SCEPTOR X-57

    Get PDF
    As efficiency, emissions, and noise become increasingly prominent considerations in aircraft design, turning to an electric propulsion system is a desirable solution. Achieving the intended benefits of distributed electric propulsion (DEP) requires thermally demanding high power systems, presenting a different set of challenges compared to traditional aircraft propulsion. The embedded nature of these heat sources often preclude the use of traditional thermal management systems in order to maximize performance, with less opportunity to exhaust waste heat to the surrounding environment. This paper summarizes the thermal analyses of X-57 vehicle subsystems that don't employ externally air-cooled heat sinks. The high-power battery, wires, high-lift motors, and aircraft outer surface are subjected to heat loads with stringent thermal constraints. The temperature of these components are tracked transiently, since they never reach a steady-state equilibrium. Through analysis and testing, this report demonstrates that properly characterizing the material properties is key to accurately modeling peak temperature of these systems, with less concern for spatial thermal gradients. Experimentally validated results show the thermal profile of these systems can be sufficiently estimated using reduced order approximations

    Optimization of an Air Core Dual Halbach Array Axial Flux Rim Drive for Electric Aircraft

    Get PDF
    The anticipated development of the on-demand-mobility (ODM) market has accelerated the development of electric aircraft. Most proposed electric aircraft have propulsion systems that consist of fans directly driven by electric motors. The lower complexity of these propulsion systems opens the door to more custom propulsion system designs that are tailored to a given aircraft and its mission. This paper represents initial steps in the development of an electric propulsion system design code. A proof of concept version of the code is presented. The proof of concept version of the code is for the design of an axial flux rim driven propulsion system. NASA's all electric aircraft X-57, is used as a case study for this design code. The results of this case study are used to discuss the feasibility and potential benefits of using an axial flux rim driven propulsor on X-57. The final result of the case study shows a potential 4km increase in range over the current design

    Steady State Thermal Analyses of SCEPTOR X-57 Wingtip Propulsion

    Get PDF
    Electric aircraft concepts enable advanced propulsion airframe integration approaches that promise increased efficiency as well as reduced emissions and noise. NASA's fully electric Maxwell X-57, developed under the SCEPTOR program, features distributed propulsion across a high aspect ratio wing. There are 14 propulsors in all: 12 high lift motor that are only active during take off and climb, and 2 larger motors positioned on the wingtips that operate over the entire mission. The power electronics involved in the wingtip propulsion are temperature sensitive and therefore require thermal management. This work focuses on the high and low fidelity heat transfer analysis methods performed to ensure that the wingtip motor inverters do not reach their temperature limits. It also explores different geometry configurations involved in the X-57 development and any thermal concerns. All analyses presented are performed at steady state under stressful operating conditions, therefore predicting temperatures which are considered the worst-case scenario to remain conservative

    Implementation of Enhanced Propulsion Control Modes for Emergency Flight Operation

    Get PDF
    Aircraft engines can be effective actuators to help pilots avert or recover from emergency situations. Emergency control modes are being developed to enhance the engines performance to increase the probability of recovery under these circumstances. This paper discusses a proposed implementation of an architecture that requests emergency propulsion control modes, allowing the engines to deliver additional performance in emergency situations while still ensuring a specified safety level. In order to determine the appropriate level of engine performance enhancement, information regarding the current emergency scenario (including severity) and current engine health must be known. This enables the engine to operate beyond its nominal range while minimizing overall risk to the aircraft. In this architecture, the flight controller is responsible for determining the severity of the event and the level of engine risk that is acceptable, while the engine controller is responsible for delivering the desired performance within the specified risk range. A control mode selector specifies an appropriate situation-specific enhanced mode, which the engine controller then implements. The enhanced control modes described in this paper provide additional engine thrust or response capabilities through the modification of gains, limits, and the control algorithm, but increase the risk of engine failure. The modifications made to the engine controller to enable the use of the enhanced control modes are described, as are the interaction between the various subsystems and importantly, the interaction between the flight controller/pilot and the propulsion control system. Simulation results demonstrate how the system responds to requests for enhanced operation and the corresponding increase in performance

    Degradation and Mineralization of Carbamazepine Using an Electro-Fenton Reaction Catalyzed by Magnetite Nanoparticles Fixed on an Electrocatalytic Carbon Fiber Textile Cathode

    Get PDF
    Pharmaceutical wastes are considered to be important pollutants even at low concentrations. In this regard, carbamazepine has received significant attention due to its negative effect on both ecosystem and human health. However, the need for acidic conditions severely hinders the use of conventional Fenton reagent reactions for the control and elimination of carbamazepine in wastewater effluents and drinking water influents. Herein, we report of the synthesis and use of flexible bifunctional nanoelectrocatalytic textile materials, Fe_3O_4-NP@CNF, for the effective degradation and complete mineralization of carbamazepine in water. The nonwoven porous structure of the composite binder-free Fe_3O_4-NP@CNF textile is used to generate H_2O_2 on the carbon nanofiber (CNF) substrate by O_2 reduction. In addition, ·OH radical is generated on the surface of the bonded Fe_3O_4 nanoparticles (NPs) at low applied potentials (−0.345 V). The Fe_3O_4-NPs are covalently bonded to the CNF textile support with a high degree of dispersion throughout the fiber matrix. The dispersion of the nanosized catalysts results in a higher catalytic reactivity than existing electro-Fenton systems. For example, the newly synthesized Fe_3O_4-NPs system uses an Fe loading that is 2 orders of magnitude less than existing electro-Fenton systems, coupled with a current efficiency that is higher than electrolysis using a boron-doped diamond electrode. Our test results show that this process can remove carbamazepine with high pseudo-first-order rate constants (e.g., 6.85 h^(–1)) and minimal energy consumption (0.239 kW·h/g carbamazepine). This combination leads to an efficient and sustainable electro-Fenton process

    Trajectory Optimization of Electric Aircraft Subject to Subsystem Thermal Constraints

    Get PDF
    Electric aircraft pose a unique design challenge in that they lack a simple way to reject waste heat from the power train. While conventional aircraft reject most of their excess heat in the exhaust stream, for electric aircraft this is not an option. To examine the implications of this challenge on electric aircraft design and performance, we developed a model of the electric subsystems for the NASA X-57 electric testbed aircraft. We then coupled this model with a model of simple 2D aircraft dynamics and used a Legendre-Gauss-Lobatto collocation optimal control approach to find optimal trajectories for the aircraft with and without thermal constraints. The results show that the X-57 heat rejection systems are well designed for maximum-range and maximum-efficiency flight, without the need to deviate from an optimal trajectory. Stressing the thermal constraints by reducing the cooling capacity or requiring faster flight has a minimal impact on performance, as the trajectory optimization technique is able to find flight paths which honor the thermal constraints with relatively minor deviations from the nominal optimal trajectory

    Development of a Multi-Phase Mission Planning Tool for NASA X-57 Maxwell

    Get PDF
    The physical design and operation of electric aircraft like NASA Maxwell X-57 are significantly different than conventionally fueled aircraft. Operational optimization will require close coupling of aerodynamics, propulsion, and power. To address the uncertainty of electric aircraft operation, a system level Mission Planning Tool is developed to simulate all aircraft trajectory phases: taxi, motor run-up, takeoff, climb, cruise, and descent. The Mission Planning Tool captures performance parameters at each point of the trajectory including battery state of charge, the temperatures of components in the electrical system, and propulsion system thrust. This work describes the modeling of each mission phase, and compares the results of simulating a user-specified trajectory, and using a collocated optimal control approach to determine an optimal trajectory. The results show that optimization of the mission show a significant increase in the final battery state of charge over the user- specified simulation strategy. These results will inform the operation of the NASA Maxwell X-57 test flights that will take place this year
    • …
    corecore