564 research outputs found

    The chemical composition of Ultracompact Dwarf Galaxies in the Virgo and Fornax Clusters

    Full text link
    We present spectroscopic observations of ultra compact dwarf (UCD) galaxies in the Fornax and Virgo Clusters made to measure and compare their stellar populations. The spectra were obtained on the Gemini-North (Virgo) and Gemini-South (Fornax) Telescopes using the respective Gemini Multi-Object Spectrographs. We estimated the ages, metallicities and abundances of the objects from mea- surements of Lick line-strength indices in the spectra; we also estimated the ages and metallicities independently using a direct spectral fitting technique. Both methods re- vealed that the UCDs are old (mean age 10.8 \pm 0.7 Gyr) and (generally) metal-rich (mean [Fe/H] = -0.8 \pm 0.1). The alpha-element abundances of the objects measured from the Lick indices are super-Solar. We used these measurements to test the hypothesis that UCDs are formed by the tidal disruption of present-day nucleated dwarf elliptical galaxies. The data are not consistent with this hypothesis because both the ages and abundances are significantly higher than those of observed dwarf galaxy nuclei (this does not exclude disruption of an earlier generation of dwarf galaxies). They are more consistent with the properties of globular star clusters, although at higher mean metallicity. The UCDs display a very wide range of metallicity (-1.7 <[Fe/H]< 0.0), spanning the full range of both globular clusters and dwarf galaxy nuclei. We confirm previous reports that most UCDs have high metalliticities for their luminosities, lying significantly above the canonical metallicitiy-luminosity relation followed by early-type galaxies. In contrast to previous work we find that there is no significant difference in either the mean ages or the mean metallicities of the Virgo and Fornax UCD populations.Comment: 15 pages (including references and appendix), 8 figures (including appendix

    The portrait of Malin 2: a case study of a giant low surface brightness galaxy

    Full text link
    The low surface brightness disc galaxy Malin2 challenges the standard theory of galaxy evolution by its enormous total mass ~2 10^12 Ms which must have been formed without recent major merger events. The aim of our work is to create a coherent picture of this exotic object by using the new optical multicolor photometric and spectroscopic observations at Apache Point Observatory as well as archival datasets from Gemini and wide-field surveys. We performed the Malin2 mass modelling, estimated the contribution of the host dark halo and found that it had acquired its low central density and the huge isothermal sphere core radius before the disc subsystem was formed. Our spectroscopic data analysis reveals complex kinematics of stars and gas in the very inner region. We measured the oxygen abundance in several clumps and concluded that the gas metallicity decreases from the solar value in the centre to a half of that at 20-30 kpc. We found a small satellite and measured its mass (1/500 of the host galaxy) and gas metallicity. One of the unique properties of Malin2 turned to be the apparent imbalance of ISM: the molecular gas is in excess with respect to the atomic gas for given values of the gas equilibrium turbulent pressure. We explain this imbalance by the presence of a significant portion of the dark gas not observable in CO and the Hi 21 cm lines. We also show that the depletion time of the observed molecular gas traced by CO is nearly the same as in normal galaxies. Our modelling of the UV-to-optical spectral energy distribution favours the exponentially declined SFH over a single-burst scenario. We argue that the massive and rarefied dark halo which had formed before the disc component well describes all the observed properties of Malin2 and there is no need to assume additional catastrophic scenarios proposed previously to explain the origin of giant LSB galaxies. [Abbreviated]Comment: 17 pages, 10 figures, accepted for publication in MNRA

    Tidal streams in newly discovered M32 analogues: evidence for the stripping scenario

    Get PDF
    We present two newly-discovered compact elliptical (cE) galaxies, exhibiting clear evidence of tidal steams, and found during a search of SDSS DR7 for cE candidates. The structural parameters of the cEs are derived using GALFIT, giving effective radii, Re, of 388 and 263 parsecs, and B-band mean surface brightnesses within Re of 19.4 and 19.2 magnitudes per arcsec squared. We have re-analysed the SDSS spectra, which indicate that they possess young to intermediate-age stellar populations. These two cEs provide direct evidence, a "smoking gun", for the process of tidal stripping that is believed to be the origin of M32-type galaxies. Both are in small groups with a large spiral fraction, suggesting that we may be seeing the formation of such cE galaxies in dynamically young environments. The more compact of the galaxies is found in a small group not unlike the Local Group, and thus provides an additional model for understanding M32.Comment: 9 pages, 10 figures. Accepted to MNRA
    • …
    corecore