7 research outputs found

    Field-effect detection using phospholipid membranes -Topical Review

    No full text
    The application of field-effect devices to biosensors has become an area of intense research interest. An attractive feature of field-effect sensing is that the binding or reaction of biomolecules can be directly detected from a change in electrical signals. The integration of such field-effect devices into cell membrane mimics may lead to the development of biosensors useful in clinical and biotechnological applications. This review summarizes recent studies on the fabrication and characterization of field-effect devices incorporating model membranes. The incorporation of black lipid membranes and supported lipid monolayers and bilayers into semiconductor devices is described

    Induced Rupture of Vesicles Adsorbed on Glass by Pore Formation at the Surface–Bilayer Interface

    No full text
    Supported lipid bilayers (SLBs) are often formed by spontaneous vesicle rupture and fusion on a solid surface. A well-characterized rupture mechanism for isolated vesicles is pore nucleation and expansion in the solution-exposed nonadsorbed area. In contrast, pore formation in the adsorbed bilayer region has not been investigated to date. In this work, we studied the detailed mechanisms of asymmetric rupture of giant unilamellar vesicles (GUVs) adsorbed on glass using fluorescence microscopy. Asymmetric rupture is the pathway where a rupture pore forms in a GUV near the edge of the glass–bilayer interface with high curvature and then expansion of the pore yields a planar bilayer patch. We show that asymmetric rupture occasionally resulted in SLB patches bearing a defect pore. The defect formation probability depended on lipid composition, salt concentration, and pH. Approximately 40% of negatively charged GUVs under physiological conditions formed pore-containing SLB patches, while negatively charged GUVs at low salt concentration or pH 4.0 and positively charged GUVs exhibited a low probability of defect inclusion. The edge of the defect pore was either in contact with (on-edge) or away from (off-edge) the edge of the planar bilayer. On-edge pores were predominantly formed over off-edge defects. Pores initially formed in the glass-adsorbed region before rupture, most frequently in close contact with the edge of the adsorbed region. When a pore formed near the edge of the adsorbed area or when the edge of a pore reached that of the adsorbed area by pore expansion, asymmetric rupture was induced from the defect site. These induced rupture mechanisms yielded SLB patches with an on-edge pore. In contrast, off-edge pores were produced when defect pore generation and subsequent vesicle rupture were uncoupled. The current results demonstrate that pore formation in the surface-adsorbed region of GUVs is not a negligible event

    Packing Density Changes of Supported Lipid Bilayers Observed by Fluorescence Microscopy and Quartz Crystal Microbalance-Dissipation

    No full text
    Various properties of supported lipid bilayers such as diffusion and lipid partitioning are well characterized. However, little attention has been paid to their molecular packing density. In this work, the adsorption of 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP) vesicles on glass and silicon dioxide was investigated using fluorescence microscopy, quartz crystal microbalance-dissipation (QCM-D), and atomic force microscopy. Fluorescence recovery after photobleaching data showed that the adsorption of large unilamellar vesicles (LUVs) on glass yielded supported bilayers with full mobility under alkaline (pH 8.3) and acidic (pH 3–4) conditions. These fluid bilayers exhibited quite different diffusion constants; those at alkaline pH were ∼10 times larger than those at acidic pH. The reason for this pH dependence was clarified by investigation of the rupture of giant unilamellar vesicles (GUVs) on glass. Fluorescence data revealed that the area of planar bilayer patches increased at alkaline pH. Thus, we conclude that the rapid diffusion in alkaline solution arises from the decreased molecular density. QCM-D data showed that dissipation increased in a stepwise manner during vesicle fusion on silicon dioxide at alkaline pH. We attribute this behavior to the decrease in packing density of planar bilayers

    Binding of Lipopolysaccharide and Cholesterol-Modified Gelatin on Supported Lipid Bilayers: Effect of Bilayer Area Confinement and Bilayer Edge Tension

    No full text
    Binding of amphiphilic molecules to supported lipid bilayers (SLBs) often results in lipid fibril extension from the SLBs. Previous studies proposed that amphiphiles with large and flexible hydrophilic regions trigger lipid fibril formation in SLBs by inducing membrane curvature via their hydrophilic regions. However, no experimental studies have verified this mechanism of fibril formation. In this work, we investigated the binding of lipopolysaccharide (LPS) and cholesterol-modified gelatin to SLBs using fluorescence microscopy. SLBs with restricted and unrestricted bilayer areas were employed to identify the mechanism of fibril generation. We show that the main cause of lipid fibril formation is an approximately 20% expansion in the bilayer area rather than increased membrane curvature. The data indicate that bilayer area confinement plays a critical role in morphological changes of SLBs even when bound amphiphilic molecules have a large hydrophilic domain. We also show that bilayer area change after LPS insertion is dependent on the patch shape of the SLB. When an SLB patch consists of a broad bilayer segment connected to a long thin streak, bilayer area expansion mainly occurs within the bilayer streak. The results indicate that LPS insertion causes net lipid flow from the broad bilayer region to the streak area. The differential increase in area is explained by the instability of planar bilayer streaks that originate from the large energetic contribution of line tension arising along the bilayer edge

    Induction of Intermembrane Adhesion by Incorporation of Synthetic Adhesive Molecules into Cell Membranes

    No full text
    Modulation of cell adhesion by synthetic materials is useful for a wide range of biomedical applications. Here, we characterized cell adhesion mediated by a semisynthetic molecule, cholesteryl-modified gelatin (chol-gelatin). We found that this hybrid molecule facilitated cell adhesion by connecting two apposed membranes via multiple cholesterol moieties on the gelatin molecules, whereas unmodified gelatin did not bind to cell membranes. Analyses revealed that the rate of the formation of cell adhesions was increased by displaying more cholesterol moieties on the cell membrane. In contrast, the area of the cell adhesion site was unchanged by increasing the number of cholesterol molecules, suggesting that chol-gelatin may suppress cell spreading. Such restriction was not observed in cell adhesion mediated by the mutant of physiological adhesion protein CD2, which lacked its cytoplasmic domain and was unable to connect to cytoplasmic actin filaments, but had a similar affinity for its ligand compared with the chol-gelatin–cell membrane interaction. Further analysis suggested the restriction of cell spreading by chol-gelatin was largely independent of the modulation of the surface force, and thus we hypothesize that the restriction could be in part due to the modulation of cell membrane mechanics by membrane-incorporated chol-gelatin. Our study dissected the two roles of the hybrid molecule in cell adhesion, namely the formation of a molecular connection and the restriction of spreading, and may be useful for designing other novel synthetic agents to modulate various types of cell adhesions

    Effect of Average Phospholipid Curvature on Supported Bilayer Formation on Glass by Vesicle Fusion

    Get PDF
    The adsorption of large unilamellar vesicles composed of various combinations of phosphatidylcholine, phosphatidylethanolamine (PE), monomethyl PE, and dimethyl PE (PE-Me(2)) onto a glass surface was studied using fluorescence microscopy. The average lipid geometry within the vesicles, described mathematically by the average intrinsic curvature, C(0,ave), was methodically altered by changing the lipid ratios to determine the effect of intrinsic curvature on the ability of vesicles to rupture and form a supported lipid bilayer. We show that the ability of vesicles to create fluid planar bilayers is dependent on C(0,ave) and independent of the identity of the component lipids. When the C(0,ave) was ∼−0.1 nm(−1), the vesicles readily formed supported lipid bilayers with almost full mobility. In contrast, when the C(0,ave) ranged from ∼−0.2 to ∼−0.3 nm(−1), the adsorbed vesicles remained intact upon the surface. The results indicate that the average shape of lipid molecules within a vesicle (C(0,ave)) is essential for determining kinetically viable reactions that are responsible for global geometric changes
    corecore