105 research outputs found

    THE CORRELATION OF GOLF PUTTING CLUB HEAD VELOCITY AND GRIP FORCE FOR EACH PHASE

    Get PDF
    We investigate the correlation of golf putting club head velocity and grip force in different phases during the putting stroke. Five elite college players (handicap: 2~8) executed a putt as accurately as possible to reach a target distance of 12ft. The Novel System and were used to measure the grip force and club head velocity. The lowest club head velocity and grip force both occurred at address up to the top of backswing (phase I). The club head velocity and grip force started increasing during the downswing and reached its peak before impact (phase II), and decreased after impact to finish (phase III). The mean club head velocity and grip force for Phase I, II, III in order are 0.33m/s, 0.92m/s, 0.87m/s; 28.09N, 54.77N, 50.76N. Club head velocity was significantly correlated to grip force in phase II and III (r=0.937; r=0.866). The similar variation pattern of club head speed and grip force may give better control to the putter during the impact and produce more consistent putting stroke

    Structural insights into the electron/proton transfer pathways in the quinol : fumarate reductase from Desulfovibrio gigas

    Get PDF
    Guan, H., Hsieh, Y., Lin, P. et al. Structural insights into the electron/proton transfer pathways in the quinol : fumarate reductase from Desulfovibrio gigas. Sci Rep 8, 14935 (2018) doi:10.1038/s41598-018-33193-

    Structural insights into the electron/proton transfer pathways in the quinol:fumarate reductase from Desulfovibrio gigas

    Get PDF
    The membrane-embedded quinol:fumarate reductase (QFR) in anaerobic bacteria catalyzes the reduction of fumarate to succinate by quinol in the anaerobic respiratory chain. The electron/proton-transfer pathways in QFRs remain controversial. Here we report the crystal structure of QFR from the anaerobic sulphate-reducing bacterium Desulfovibrio gigas (D. gigas) at 3.6 Å resolution. The structure of the D. gigas QFR is a homo-dimer, each protomer comprising two hydrophilic subunits, A and B, and one transmembrane subunit C, together with six redox cofactors including two b-hemes. One menaquinone molecule is bound near heme b_L in the hydrophobic subunit C. This location of the menaquinone-binding site differs from the menaquinol-binding cavity proposed previously for QFR from Wolinella succinogenes. The observed bound menaquinone might serve as an additional redox cofactor to mediate the proton-coupled electron transport across the membrane. Armed with these structural insights, we propose electron/proton-transfer pathways in the quinol reduction of fumarate to succinate in the D. gigas QFR

    Structural insights into the electron/proton transfer pathways in the quinol : fumarate reductase from Desulfovibrio gigas

    Get PDF
    The membrane-embedded quinol: fumarate reductase (QFR) in anaerobic bacteria catalyzes the reduction of fumarate to succinate by quinol in the anaerobic respiratory chain. The electron/protontransfer pathways in QFRs remain controversial. Here we report the crystal structure of QFR from the anaerobic sulphate-reducing bacterium Desulfovibrio gigas (D. gigas) at 3.6 Å resolution. The structure of the D. gigas QFR is a homo-dimer, each protomer comprising two hydrophilic subunits, A and B, and one transmembrane subunit C, together with six redox cofactors including two b-hemes. One menaquinone molecule is bound near heme bL in the hydrophobic subunit C. This location of the menaquinone-binding site differs from the menaquinol-binding cavity proposed previously for QFR from Wolinella succinogenes. The observed bound menaquinone might serve as an additional redox cofactor to mediate the proton-coupled electron transport across the membrane. Armed with these structuralinsights, we propose electron/proton-transfer pathways in the quinol reduction of fumarate to succinate in the D. gigas QFR.Guan, H., Hsieh, Y., Lin, P. et al. Structural insights into the electron/proton transfer pathways in the quinol : fumarate reductase from Desulfovibrio gigas. Sci Rep 8, 14935 (2018) doi:10.1038/s41598-018-33193-

    Comparison of coplanar and noncoplanar intensity-modulated radiation therapy and helical tomotherapy for hepatocellular carcinoma

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To compare the differences in dose-volume data among coplanar intensity modulated radiotherapy (IMRT), noncoplanar IMRT, and helical tomotherapy (HT) among patients with hepatocellular carcinoma (HCC) and portal vein thrombosis (PVT).</p> <p>Methods</p> <p>Nine patients with unresectable HCC and PVT underwent step and shoot coplanar IMRT with intent to deliver 46 - 54 Gy to the tumor and portal vein. The volume of liver received 30Gy was set to keep less than 30% of whole normal liver (V30 < 30%). The mean dose to at least one side of kidney was kept below 23 Gy, and 50 Gy as for stomach. The maximum dose was kept below 47 Gy for spinal cord. Several parameters including mean hepatic dose, percent volume of normal liver with radiation dose at X Gy (Vx), uniformity index, conformal index, and doses to organs at risk were evaluated from the dose-volume histogram.</p> <p>Results</p> <p>HT provided better uniformity for the planning-target volume dose coverage than both IMRT techniques. The noncoplanar IMRT technique reduces the V10 to normal liver with a statistically significant level as compared to HT. The constraints for the liver in the V30 for coplanar IMRT vs. noncoplanar IMRT vs. HT could be reconsidered as 21% vs. 17% vs. 17%, respectively. When delivering 50 Gy and 60-66 Gy to the tumor bed, the constraints of mean dose to the normal liver could be less than 20 Gy and 25 Gy, respectively.</p> <p>Conclusion</p> <p>Noncoplanar IMRT and HT are potential techniques of radiation therapy for HCC patients with PVT. Constraints for the liver in IMRT and HT could be stricter than for 3DCRT.</p

    The atomic structures of shrimp nodaviruses reveal new dimeric spike structures and particle polymorphism

    Get PDF
    Shrimp nodaviruses, including Penaeus vannamei (PvNV) and Macrobrachium rosenbergii nodaviruses (MrNV), cause white-tail disease in shrimps, with high mortality. The viral capsid structure determines viral assembly and host specificity during infections. Here, we show cryo-EM structures of T = 3 and T = 1 PvNV-like particles (PvNV-LPs), crystal structures of the protrusion-domains (P-domains) of PvNV and MrNV, and the crystal structure of the ∆N-ARM-PvNV shell-domain (S-domain) in T = 1 subviral particles. The capsid protein of PvNV reveals five domains: the P-domain with a new jelly-roll structure forming cuboid-like spikes; the jelly-roll S-domain with two calcium ions; the linker between the S- and P-domains exhibiting new cross and parallel conformations; the N-arm interacting with nucleotides organized along icosahedral two-fold axes; and a disordered region comprising the basic N-terminal arginine-rich motif (N-ARM) interacting with RNA. The N-ARM controls T = 3 and T = 1 assemblies. Increasing the N/C-termini flexibility leads to particle polymorphism. Linker flexibility may influence the dimeric-spike arrangement

    IRAK2, an IL1R/TLR Immune Mediator, Enhances Radiosensitivity via Modulating Caspase 8/3-Mediated Apoptosis in Oral Squamous Cell Carcinoma

    Get PDF
    Predicting and overcoming radioresistance are crucial in radiation oncology, including in managing oral squamous cell carcinoma (OSCC). First, we used RNA-sequence to compare expression profiles of parent OML1 and radioresistant OML1-R OSCC cells in order to select candidate genes responsible for radiation sensitivity. We identified IRAK2, a key immune mediator of the IL-1R/TLR signaling, as a potential target in investigating radiosensitivity. In four OSCC cell lines, we observed that intrinsically low IRAK2 expression demonstrated a radioresistant phenotype (i.e., OML1-R and SCC4), and vice versa (i.e., OML1 and SCC25). Next, we overexpressed IRAK2 in low IRAK2-expression OSCC cells and knocked it down in high IRAK2-expression cells to examine changes of irradiation response. After ionizing radiation (IR) exposure, IRAK2 overexpression enhanced the radiosensitivity of radioresistant cells and synergistically suppressed OSCC cell growth both in vitro and in vivo, and vice versa. We found that IRAK2 overexpression restored and enhanced radiosensitivity by enhancing IR-induced cell killing via caspase-8/3-dependent apoptosis. OSCC patients with high IRAK2 expression had better post-irradiation local control than those with low expression (i.e., 87.4% vs. 60.0% at five years, P = 0.055), showing that IRAK2 expression was associated with post-radiation recurrence. Multivariate analysis confirmed high IRAK2 expression as an independent predictor for local control (HR, 0.11; 95% CI, 0.016 – 0.760; P = 0.025). In conclusion, IRAK2 enhances radiosensitivity, via modulating caspase 8/3-medicated apoptosis, potentially playing double roles as a predictive biomarker and a novel therapeutic target in OSCC

    The atomic structures of shrimp nodaviruses reveal new dimeric spike structures and particle polymorphism

    Get PDF
    Shrimp nodaviruses, including Penaeus vannamei (PvNV) and Macrobrachium rosenbergii nodaviruses (MrNV), cause white-tail disease in shrimps, with high mortality. The viral capsid structure determines viral assembly and host specificity during infections. Here, we show cryo-EM structures of T = 3 and T = 1 PvNV-like particles (PvNV-LPs), crystal structures of the protrusion-domains (P-domains) of PvNV and MrNV, and the crystal structure of the ∆N-ARM-PvNV shell-domain (S-domain) in T = 1 subviral particles. The capsid protein of PvNV reveals five domains: the P-domain with a new jelly-roll structure forming cuboid-like spikes; the jelly-roll S-domain with two calcium ions; the linker between the S- and P-domains exhibiting new cross and parallel conformations; the N-arm interacting with nucleotides organized along icosahedral two-fold axes; and a disordered region comprising the basic N-terminal arginine-rich motif (N-ARM) interacting with RNA. The N-ARM controls T = 3 and T = 1 assemblies. Increasing the N/C-termini flexibility leads to particle polymorphism. Linker flexibility may influence the dimeric-spike arrangement

    The atomic structures of shrimp nodaviruses reveal new dimeric spike structures and particle polymorphism

    Get PDF
    Shrimp nodaviruses, including Penaeus vannamei (PvNV) and Macrobrachium rosenbergii nodaviruses (MrNV), cause white-tail disease in shrimps, with high mortality. The viral capsid structure determines viral assembly and host specificity during infections. Here, we show cryo-EM structures of T = 3 and T = 1 PvNV-like particles (PvNV-LPs), crystal structures of the protrusion-domains (P-domains) of PvNV and MrNV, and the crystal structure of the ∆N-ARM-PvNV shell-domain (S-domain) in T = 1 subviral particles. The capsid protein of PvNV reveals five domains: the P-domain with a new jelly-roll structure forming cuboid-like spikes; the jelly-roll S-domain with two calcium ions; the linker between the S- and P-domains exhibiting new cross and parallel conformations; the N-arm interacting with nucleotides organized along icosahedral two-fold axes; and a disordered region comprising the basic N-terminal arginine-rich motif (N-ARM) interacting with RNA. The N-ARM controls T = 3 and T = 1 assemblies. Increasing the N/C-termini flexibility leads to particle polymorphism. Linker flexibility may influence the dimeric-spike arrangement
    corecore